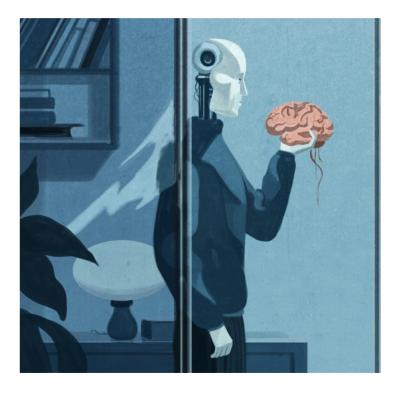
L'ÉCOLE DES HAUTES ÉTUDES EN SCIENCES SOCIALES


What is a truly ethical AI?

An end-to-end approach to responsible and humane technological systems

Antonio Casilli

Why AI ethics?

- Al has been around for 70 years.
- But ethical AI guidelines started proliferating in the second half of the 2010s.
 - * Loss of control to some 'superintelligence'?
 - * Ethical challenges in autonomous technologies (weapon systems, cars...)

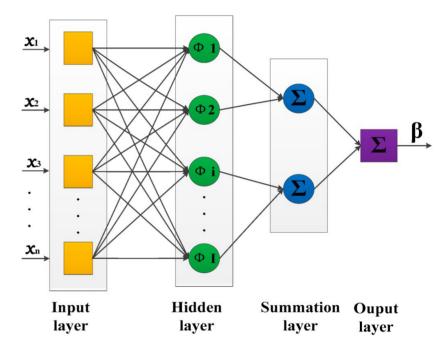
Main debates

Transparency
 Justice and fairness
 Non-maleficence
 Legal responsibility
 Privacy

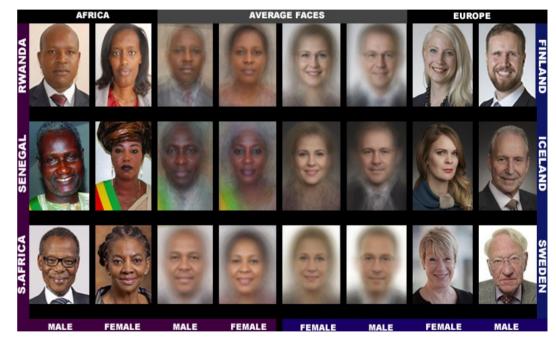
machine intelligence

PERSPECTIVE

The global landscape of AI ethics guidelines

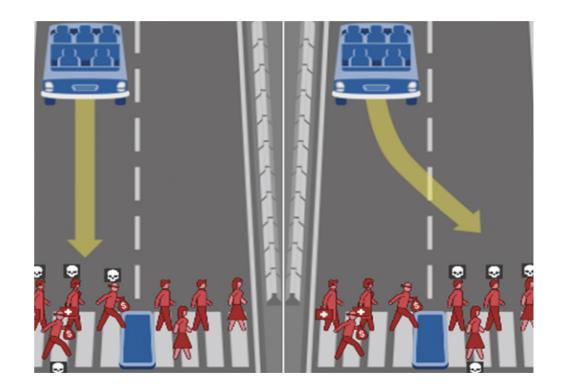

Anna Jobin, Marcello Ienca and Effy Vayena*

In the past five years, private companies, research institutions and public sector organizations have issued principles and guidelines for ethical artificial intelligence (AI). However, despite an apparent agreement that AI should be 'ethical', there is debate about both what constitutes 'ethical AI' and which ethical requirements, technical standards and beat practices are needed for its realization. To investigate whether a global agreement on these questions is emerging, we mapped and analysed the current corpus of principles and guidelines on ethical AI. Our results reveal a global convergence emerging around five ethical principles (transparency, justice and fairness, non-maleficence, responsibility and privacy), with substantive divergence in relation to how these principles are interpreted, why they are deemed important, what issue, demain er acters they pertain to, and how they should be implemented. Our findings highlight the importance of integrating guideline-development efforts with substantive ethical analysis and adequate implementation strategies.

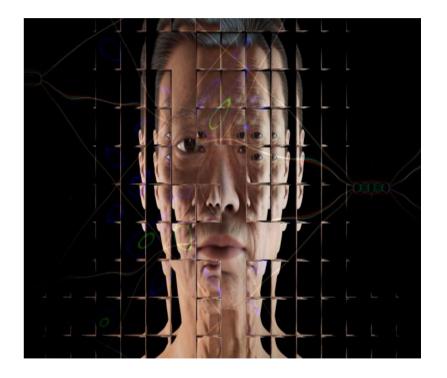

A rificial intelligence (AI), or the theory and development of compater systems able to perform tasks normally requiring human intelligence, is widely heralded as an ongoing "revolution" transforming science and society altogether". While approaches to AI such as machine learning, deep learning and sufficial neural networks are reshaping data processing and analysis", autonomous and semi-autonomous systems are being increasingly used in a variety of sectors including healthcare, transportation and the production chain". In light of its powerful transformative force and profound impact across various societial domains, AI has sparked ample debate about the principles and values that should guide its development and use⁶⁰. Fears that AI might jeopardize jobs for human workers⁷, be misused by maleveleni actors⁷, elude accountability or inadvertently dis-

Reports and guidance documents for ethical AI are instances of what is termed non-legilative policy instruments or soft law²¹. Unlike so-called hard law—that is, legally binding regulations passed by the legislatures to define permitted or prohibited conduct—ethics guidelines are not legally binding with—and have been observed to have significant practical influence on—decisionmaking in certain fields, comparable to that of legislative norms²¹. Indeed, the intense efforts of such a diverse set of stakeholders in insuing AI principles and policies is noteworth; because they demonstrate not only the need for ethical guidance, but also the strong interest of these stakeholders to shape the ethics of AI in ways that meet their respective priorities²²². Specifically, the private sector's involvement in the AI ethics arenn has been called into question

<u>Transparency</u>
 Justice and fairness
 Non-maleficence
 Legal responsibility
 Privacy


Transparency
 Justice and fairness
 Non-maleficence
 Legal responsibility
 Privacy

Transparency
 Justice and fairness
 <u>Non-maleficence</u>
 Legal responsibility
 Privacy


Transparency
 Justice and fairness
 Non-maleficence
 Legal responsibility
 Privacy

Transparency
 Justice and fairness
 Non-maleficence
 Legal responsibility
 Privacy

- Different interpretations of shared principles
- Remarkable absence of sustainability, trust, autonomy, dignity, solidarity...
- No links between principles and actionable requirements

Alignment with industrial interests

- Tech giants co-opt and neutralize critique: denigrate dissenting research + fund weakest critics
- To avoid more stringent regulation
- Focus on ethics to frame issues of power, dominance, inequalities, oppression...

o Meredith Whittaker, New York University

This is specifies moment. Privite comparison any even marketed as artificial intelligence (AI) are threading through our public life and incitivation, concentrating industrial power, compounding marginalization, and quietly shaping access to recovere and information.

In considering have to tackle this contanght of industrial Al, we must first propagine that the "advances" in Al colderated over the past decode were not due to fundamental acientific breaktheraghts in Al techniques. They were and are primarily the product of significantly concentrated data and compute resources that reside in the hands of a first large tack comportation. Modern Al is fundamentally dependent on comporate resources and business practices, and our increasing reliance on such Al code modeling large over our lives and institutience to a lands incredinant power over our lives and institutiences to a lands incredinant power over

gives these firms significant influence over both the direction of AI development and the academic institutions wishing

to research it. Meaning that tech firms are startlingly well positioned to shape what we do—and do not—know about Al and the business behind it, at the same time that their AI products are working to shape our lives and institutions.

Examining the history of the U.S. military's influence over azimtific research during the Cold War, we see parallels to the tech industry's current influence over AL. This history also offers alarming examples of the way in which U.S. military dominance worked to shape academic knowledge production, and to punish those who disserted.

Today, the tech industry is facing mounting regulatory pressure, and is increasing its effort to create tech-positive marratives and to silence and sideline critics in much the same way the U.S. military and its allies did in the pase. Taken as a whole, we use that the tech industry's dominance in AI research and knowledge production parts critical researchers and advocative within, and beyond, scademin in a treatherson

Insights

→ Big tech's control over AP resources made universities and other institutions dependent on these companies, creating a web of conflicted relationships that threaten academic freedom and our ability to understand and regulate these corporate technologies.

- -> To ensure independent and rigorous research and advocacy capable of understanding and checking
- these technologies, and the companies behind them, we need to organize, within tech and within the university.

INTERACTIONS ACH. DED

Whittaker, M. (2021). The steep cost of capture, IX Interactions, XXVIII(6): 50-55.

Alignment with industrial interests

- Tech giants account for the majority of money spent on AI research.
- Authors with corporate ties from 43% to 79%.
- Publications by Alphabet, Microsoft increasing more than fivefold.

Figure 2: Corporate and Big Tech author affiliations.

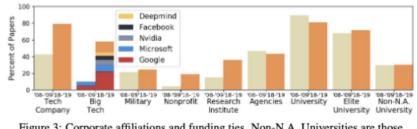
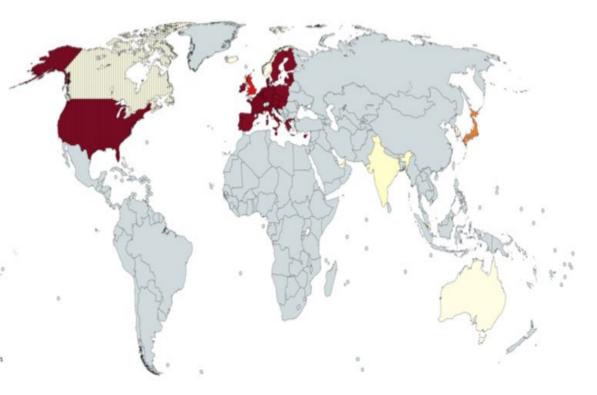
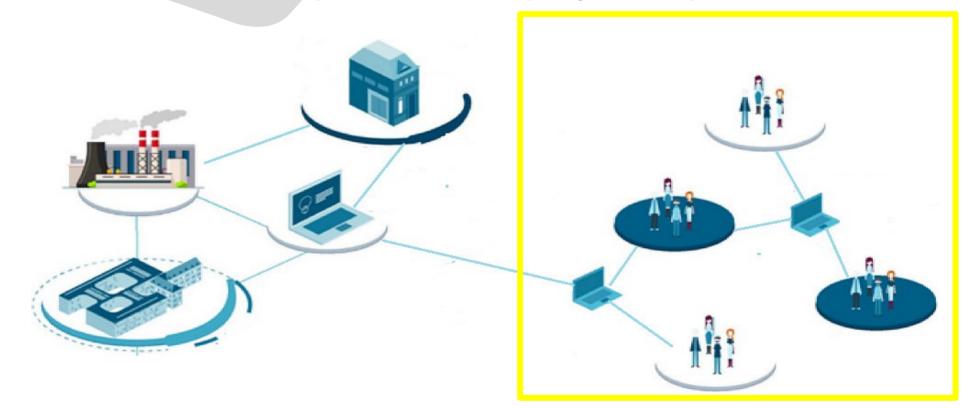
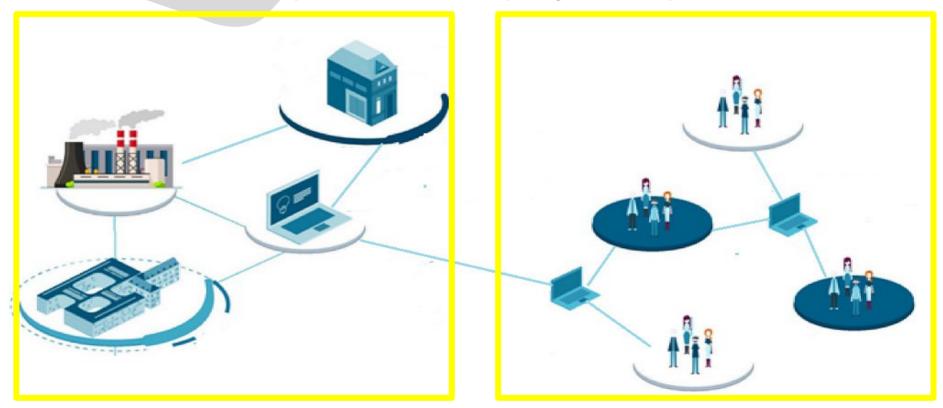



Figure 3: Corporate affiliations and funding ties. Non-N.A. Universities are those outside the U.S. and Canada.

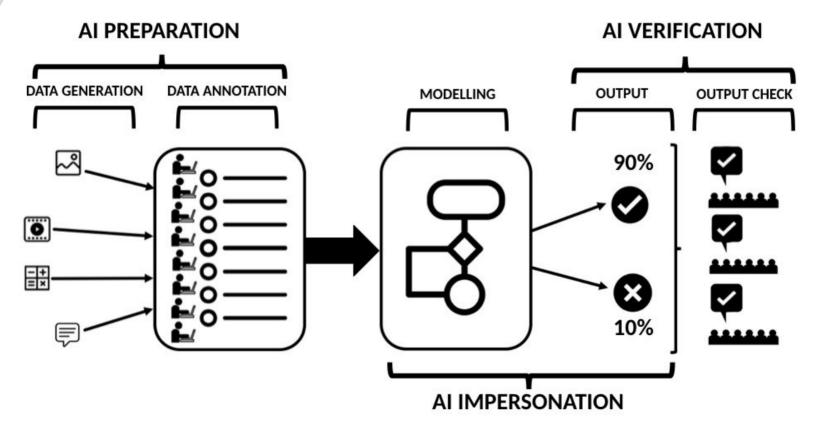
Birhane, A., Kalluri, P., Card, D., Agnew, W., Dotan, R., Bao, M. (2021). The Values Encoded in Machine Learning Research, arXiv:2106.15590 [cs.LG].


Global North initiatives

- Most guidelines released in USA, EU, UK and Japan
- Under-representation
 of the Global South
- May undermine
 pluralism and
 cultural awareness

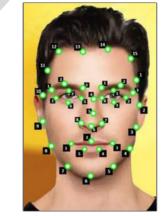

Placing the human back in the loop

Production phase vs. deployment phase



Placing the human back in the loop

Production phase vs. deployment phase



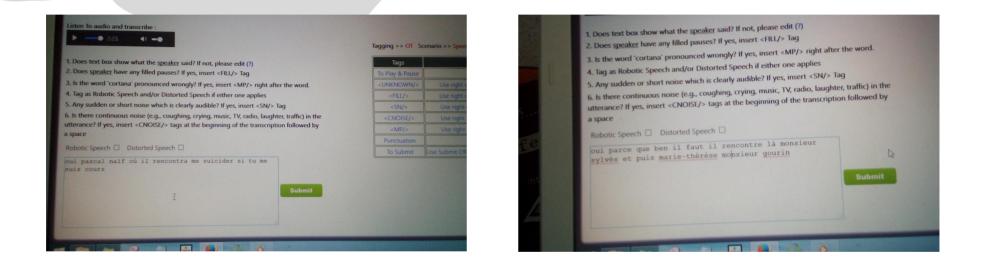
Workers behind Al

Tubaro P., Casilli A.A. & Coville M. 2020. The trainer, the verifier, the imitator: Three ways in which human platform workers support artificial intelligence. *Big Data & Society*, 7(1).

Data labor: training models

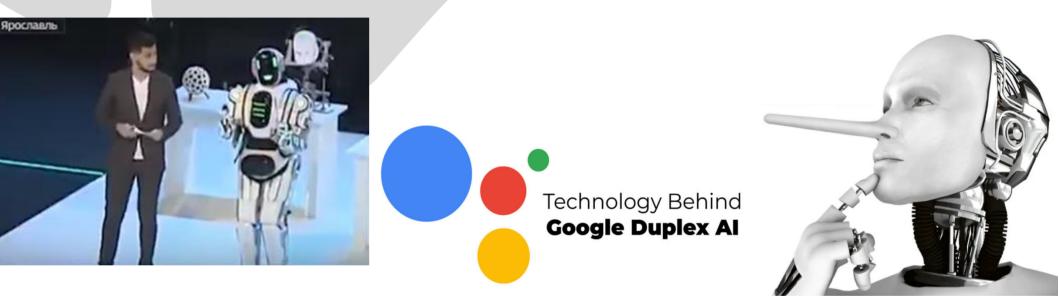
hookshel

What type of object is in this image?


'They give us a picture of a plate and say 'draw a square around a tomato', we don't know why, everyone knows what a tomato is, I hope...' T., FR, 45 yo, 2017

Tomato

Data labor: verifying outputs


'I listened to the audio recording, then a text appeared on screen, showing what [the vocal assistant] understood and transcribed. My job was to check if it was accurate - if not, I had to correct the text'

J., FR, 26 yo, 2019

Tubaro P., Casilli A.A. 2022 (in press). Human listeners and virtual assistants: Privacy and labor arbitrage in the production of smart technologies. In F. Ferrari & M. Graham (eds.), *Digital Work in the Planetary Market*. MIT Press. pp. 175-190.

Data labor: impersonating Al

'The overwhelming majority of B2B startups we know are human-based. But I understand them because for them, it's a bet on the future. They have to create the data for the appointments and then do machine learning and hope, one day, that the process will be automated' K., FR, 42 yo, 2018 'Madagascar is the leader in French AI.' K., FR, 42 yo, 2018

Source: Invisibles – ClickWorkers, France.tv, DW.

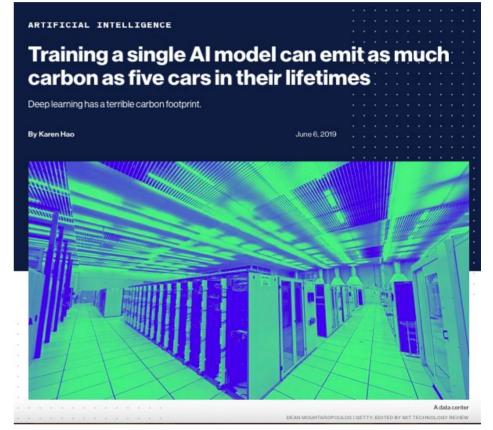
HUSH "The Human Supply Chain Behind Smart Technologies" (2020-2024); TRIA "The Labor of Artificial Intelligence: Ethics and Governance of Automation" (2021-2024)

Y

HUSH "The Human Supply Chain Behind Smart Technologies" (2020-2024); TRIA "The Labor of Artificial Intelligence: Ethics and Governance of Automation" (2021-2024)

Y

HUSH "The Human Supply Chain Behind Smart Technologies" (2020-2024); TRIA "The Labor of Artificial Intelligence: Ethics and Governance of Automation" (2021-2024)


HUSH "The Human Supply Chain Behind Smart Technologies" (2020-2024); TRIA "The Labor of Artificial Intelligence: Ethics and Governance of Automation" (2021-2024)

HUSH "The Human Supply Chain Behind Smart Technologies" (2020-2024); TRIA "The Labor of Artificial Intelligence: Ethics and Governance of Automation" (2021-2024)

HUSH "The Human Supply Chain Behind Smart Technologies" (2020-2024); TRIA "The Labor of Artificial Intelligence: Ethics and Governance of Automation" (2021-2024)

Environment and natural resources

- Very high environmental costs of ML
- Usually solutions consist paradoxical use of AI to reduce carbon footprint and waste and deadweight assets of AI

Crawford K. 2021. Atlas of Al. Yale University Press.

Environment and natural resources

- Extractive industry
 - Cobalt
 - Nickel
 - Lithium
 - Rare earths
- Disrupting economies
- Conflict over land
- International transportation
 ⇒ Huge quantity of labor

Geographies of resource extraction

53

HUSH "The Human Supply Chain Behind Smart Technologies" (2020-2024); TRIA "The Labor of Artificial Intelligence: Ethics and Governance of Automation" (2021-2024)

Conclusions

An end-to-end approach to Al?

- Consider AI ethics in the broad framework of its production systems not only its (future) deployment
- Tech-only solutions insufficient
- Take into account natural and human/social environment
 - Consider the political economy of AI, embedded in global dependencies
 - Insure humane working conditions
 - Enforce stringent standards all along the AI supply chain

Thank you

• antonio.casilli@telecom-paris.fr