


Climate change

* Increasingly severe effects

 Disproportionate impact on
disadvantaged communities

* How bad it gets depends on
what we do now

+ Need net-zero greenhouse i il o0 e o2
gas emissions by 2050 (IPCC) = g

» Action encompasses both mitigation (reducing greenhouse gas emissions)
and adaptation (resilience to consequences)



Al applications relevant Al applications that

to climate change increase greenhouse gas
mitigation / adaptation emissions

Al applications with Emissions impacts of
uncertain or systemic Al computation
impacts and hardware

L. Kaack, et al. Aligning Artificial Intelligence with Climate Change Mitigation, Nature Climate Change 2022.
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Opportunities for Al in climate action

See: Tackling Climate Change with Machine
Learning, ACM Computing Surveys 2022.
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» Improving operational efficiency
e.g. optimizing HVAC control or steel/cement manufacture

See: Tackling Climate Change with Machine
Learning, ACM Computing Surveys 2022.
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Opportunities for Al in climate action

Improving operational efficiency
e.g. optimizing HVAC control or steel/cement manufacture

Gathering information
e.g. estimating carbon stock or parsing financial disclosures
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e.g. nowcasting electricity supply or predicting demand
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See: Tackling Climate Change with Machine
Learning, ACM Computing Surveys 2022.
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Opportunities for Al in climate action

Improving operational efficiency
e.g. optimizing HVAC control or steel/cement manufacture

Gathering information
e.g. estimating carbon stock or parsing financial disclosures

Forecasting
e.g. nowcasting electricity supply or predicting demand

Speeding up simulations
e.g. emulating parts of climate models or grid planning models

Accelerating scientific discovery
e.g. suggesting materials for use in batteries and perovskites

See: Tackling Climate Change with Machine
Learning, ACM Computing Surveys 2022.



Efficient operation of electrical grids

AC Optimal Power Flow (ACOPF): nonconvex
optimization problem to determine power to
produce at each generator in a power grid

Exact solutions take too long, so grid operators
simplify the problem and waste power, especially w/
solar & wind

Naive Al algorithms can approximately solve ACOPF
fast, but violate power flow constraints, risking
blackouts

We show how to enforce these constraints, solving
ACOPF problems 10-100x faster than traditional
methods without violating power flow

subject to pfqni“ <pg <p,

minimize pgApg + prg
pgER?, g4 €RY, vEC?

max

max

Q?mSQggqg

,Urnin S |U| S pmax

(pg — pa) + (qg — qa)i = diag(v)Ww.

ity fog)
s.t.  Ox (y) <0
: hy (y) =0 ’E

P. Donti, D. Rolnick, Z. Kolter, DC3: A learning
method for optimization with hard constraints,
ICLR 2021.
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Gathering information on biodiversity

Ecosystems are collapsing, but evaluating
biodiversity requires specialized experts

Al can help scale up ecological monitoring

We’re developing automated sensors to monitor
insect populations, with a coalition of partner
ecologists

Solar-powered device attracts & photographs
insects, and Al algorithms identify them

Data then sent to experts for interpretation and

proof-reading Partners include: Aarhus University, Montreal
Insectarium, eButterfly, UK Centre for Ecology &
Hydrology, Naturalis, Université de Sherbrooke,

Université Laval, Natural Resources Canada
14
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Forecasting crop yield

Forecasting crop yield is essential to averting food
insecurity in a changing climate

Al can help predict yield from satellite imagery

But it needs labeled data - and data can be scarce
and uneven across different locations

In work with NASA Harvest, we develop meta-
learning algorithms for crop yield prediction that
can quickly adapt with minimal new data, by
leveraging metadata on location and crop type

Gabriel Tseng, Hannah Kerner, David Rolnick, TIML:
Task-Informed Meta-Learning for agriculture, preprint

arXiv 2202.02124.
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Speeding up climate simulations

Climate simulations are accurate but can be slow
(e.g. months even on a supercomputer)

This makes it harder to get localized predictions that
help in adapting to climate change

With Environment & Climate Change Canada, we use
Al to quickly approximate radiative transfer
computations, an especially slow part of standard
climate models

our algorithms incorporate known physical Salva Riihling Cachay ,Venkat.esh Rarpesh ,'Jason
) ] N. S. Cole, Howard Barker, David Rolnick, ClimART:
relations to improve accuracy A Benchmark Dataset for Emulating Atmospheric

Radiative Transfer in Weather and Climate Models,
NeurlPS 2021, and forthcoming work.
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Key considerations

Al is never a silver bullet and is only relevant sometimes

Partnership between stakeholders with complementary expertise is crucial
High-impact applications are not always flashy

Even when working with data, sometimes simple methods work
Technosolutionism can be counterproductive or contribute to greenwashing
Equity considerations

» Empowering diverse stakeholders
» Selecting and prioritizing problems
» Ensuring data is representative

18



Al applications that

increase greenhouse gas
emissions
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Al applications that increase greenhouse gas emissions

» Al used to accelerate fossil fuel exploration and extraction

o Al and advanced analytics estimated to yield $400B+ additional profit for fossil fuel
companies by 2025

o Many leading technology companies have partnered on such uses
» Direct facilitation of other high-emissions activities, e.g. fast fashion
» Alis often used to optimize systems, but sometimes
optimizing for cost # optimizing for emissions
(e.g. if labor costs outweigh energy costs)

Further reading: Greenpeace “Oil in the Cloud.”
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Al applications with

uncertain or systemic
impacts
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Al applications with systemic impacts

Many Al applications have systemic impacts on climate
action which are poorly quantified but likely significant

Consumer behavior:

» Advertising recommender systems designed to boost
consumption may be greatly increasing GHG emissions

» Autonomous vehicles - may reduce emissions in public

transportation context but increase miles driven (and

emissions) for personal transport. Depends on goals as
the technology is developed.

Credit: Grendelkhan, Wikimedia Commons

L. Kaack, et al. Aligning Artificial Intelligence with Climate Change Mitigation, Nature Climate Change 2022. -



Al applications with systemic impacts

Many Al applications have systemic impacts on climate
action which are poorly quantified but likely significant

Rebound effects

» Efficiency gains in a sector may be partially
counterbalanced by corresponding increases in use

» E.g. lower energy used in making some consumer
products

Lock-in effects

» Applications facilitated by technology may become
more entrenched (can be positive or negative)

L. Kaack, et al. Aligning Artificial Intelligence with Climate Change Mitigation, Nature Climate Change 2022.
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Al applications relevant

to climate change
mitigation [/ adaptation

Al applications with
uncertain or systemic
impacts

Al applications that
increase greenhouse gas
emissions

Emissions impacts of

Al computation
and hardware

24



Emissions impacts of Al computation and hardware

100M -

The ICT sector contributed 1to 4 % e
of global GHG emissions in 2020, = A
with two thirds from operational - - @
energy and one third from hardware ¢, == RS
Al is some fraction of ICT; Google . - o
reports Al is 15% of server energyuse  (* - B i | Demmee® |
Highly variable between algorithms, Orinng

the biggest Al algorithms are getting Energy per run 0 nn 2 1=
bigger (300,000x since 2012) P
Machine learning algorithm lifecycle Frequency of runs :

of development, training, inference s, o

L. Kaack, et al. Aligning Artificial Intelligence with Climate Change Mitigation, Nature Climate Change 2022.



Emissions impacts of Al computation and hardware

Impact assessment needed for computation-
related emissions, including cloud compute

That said, these effects are likely significantly
smaller than application-related negative impacts

Major tech players may have incentive to focus
attention on efficient computation, rather than
also re-evaluating what algorithms do (Scope 1 &2
vs Scope 3 emissions)

L. Kaack, et al. Aligning Artificial Intelligence with Climate Change Mitigation, Nature Climate Change 2022.
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Failures in the Al innovation landscape

Al continues to rely on benchmarks like ImageNet-1k to
evaluate models and pre-train for applied settings.

Such benchmarks are often derived from Internet data,
chosen & labeled without relevant experts in the room.

Example: We worked with ecologists to analyze the 27%
of ImageNet-1k that is wild animals.

* 12% of the images are wrong, 12% of categories are
contradictory.

» Species heavily biased towards United States.

Exemplary of Al innovations developed without
stakeholders relevant to societal impact.

=

Alexandra Sasha Luccioni and David Rolnick,
Bugs in the Data: How ImageNet Misrepresents
Biodiversity, preprint arXiv 2208.11695.
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Al and climate change

* Al can either help or hinder climate action, depending
on how it is used

* Overall impacts poorly understood and complex to
measure, but may be significant and can be shaped

| £)
;-

|

{

 Consideration of impacts and inclusion of relevant
stakeholders must be part of Al innovation
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* Aligning Al with climate action means more than
adding “Al for Good” applications on top of business as
usual — implicit choices matter




CLIMATE
CHANGE AND Al

Recommendations for
Government Action

Global Partnership on Al Report

In collaboration with Climate Change Al and
the Centre for Al & Climate

!" GPAI w ; CENTRE FOR

Climate Change Al Al & CLIMATE
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Al as a tool for climate action
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Shaping Al's impact

Data &
digital infrastry

Data, simulation envi
testbeds, librar
computational har

Selected policy recommendations
Improve data standards & data sharing via task forces & platforms
Ensure impact-driven funding for Al research & innovation

Develop cross-sectoral innovation centers with private & public
stakeholders to incubate projects & facilitate collaboration

Build Al capacity & literacy in climate-relevant industries,
government, & civil society, via upskilling & secondment programs

Establish best practices for responsible & participatory design

Consider potential positive/negative climate impact in shaping
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Capacity building

Implementation, evaluation, and governance capabilities

Impact assessment
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Climate Change Al

Catalyzing impactful work at the intersection of climate change & ML

Digital resources Conferences & events

Reports with opportunities for
researchers, practitioners, and
policymakers

New community-driven Wiki w/
datasets & additional resources

+  Forecasting supply and demand [ High Leveral

+  Improving scheduling and flexible demand

Newsletter, blog, & community
it R

G]_:;

{  Calls for Submissions

~ Funding

Projects & Courses
Welcome to the Climate Change Al community!

Readings

Jobs

Workshop series
» Attend @ NeurlPS '22
» Mentorship programs
» www.climatechange.ai/papers

Summer school (multiple tracks)

Webinars & happy hours

Webinar series (monthly)
Virtual happy hours (biweekly)

Climate Change Al une 2021

Speakers

Spatial planning of
low-carbon cities with
machine learning

Dr. Jason Cao

Professor

Humphrey School of Public Affairs at
the University of Minnesota

Cities represent the lion’s share of the world’s energy

use and GHG emissions, requiring rapid mitigation

Funding programs

Global research funding
for impactful projects

BV

amaetroree s INNOVation Grants

Announcing a $1.8M grants program for projects
at the intersection of Al and climate change

¢ Funding of up to $ 150K for year-long research projects

e Supporting projects involving Al or machine learning that address
problems in climate change mitigation, adaptation, or climate science

e Focus on fostering pathways to impact and the creation of catalytic
datasets

Learn more &joinin:

www.climatechange.ai

wOMm @ClimateChangeAl
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