
Will generative AI replace software engineers?

Alexander Pretschner

TUM | fortiss | bidt | CDTM | onetutor.ai

pretschner@tum.de

Isn‘t this trivial?

2Alexander Pretschner

I. Software Engineers

II. Software Engineering

III. Where (I don‘t think) genAI can take over

GenAI will assist, not replace. You read this everywhere – everyday. I‘ll try to understand why.

Main argument upfront:
SW Engineers make explicit and conscious choices of what we intend. Not understanding our intentions and
off-loading these choices to an AI likely leads to incorrect or inadequate results …
… which explains varying evidence on productivity gains and which conflicts with (my understanding of)
digital humanism in that we refuse agency and dodge responsibility.

Today‘s story

3Alexander Pretschner

I. Software Engineers

II. Software Engineering

III. Where (I don‘t think) genAI can take over

Today‘s story

4Alexander Pretschner

Require-
mentsNeeds

World
Model

Data and
Compo-

nent
Archi-
tecture

CodeML
models

Software-Intensive Systems

5Alexander Pretschner

Data

Tests

Artifacts need not exist
explicitly – conceptual world
model, resulting data model,
architecture may be directly
embedded in the code

Algo-
rithms

Depending on the context,
• elicitation of needs may be done by product managers … or requirements engineers or coders

Software Engineers?

6Alexander Pretschner

Depending on the context,
• elicitation of needs may be done by product managers … or requirements engineers or coders
• requirements engineers may turn needs into requirements - that come as vague user stories or

user req specs or system req specs

Software Engineers?

7Alexander Pretschner

Depending on the context,
• elicitation of needs may be done by product managers … or requirements engineers or coders
• requirements engineers may turn needs into requirements - that come as vague user stories or user

req specs or system req specs
• data analysts may cleanse and prepare data

Software Engineers?

8Alexander Pretschner

Depending on the context,
• elicitation of needs may be done by product managers … or requirements engineers or coders
• requirements engineers may turn needs into requirements - that come as vague user stories or user

req specs or system req specs
• data analysts may cleanse and prepare data
• AI experts may train and validate ML models

Software Engineers?

9Alexander Pretschner

Depending on the context,
• elicitation of needs may be done by product managers … or requirements engineers or coders
• requirements engineers may turn needs into requirements - that come as vague user stories or user

req specs or system req specs
• data analysts may cleanse and prepare data
• AI experts may train and validate ML models
• architects build world models, create data models

and design architectures – that come as explicit artifacts
or as code

Software Engineers?

10Alexander Pretschner

Depending on the context,
• elicitation of needs may be done by product managers … or requirements engineers or coders
• requirements engineers may turn needs into requirements - that come as vague user stories or user

req specs or system req specs
• data analysts may cleanse and prepare data
• AI may experts train and validate ML models
• architects build world models, create data models

and design architectures – that come as explicit artifacts
or as code

• developers write code and tests …

Software Engineers!

11Alexander Pretschner

Depending on the context,
• elicitation of needs may be done by product managers … or requirements engineers or coders
• requirements engineers may turn needs into requirements - that come as vague user stories or user

req specs or system req specs
• data analysts may cleanse and prepare data
• AI may experts train and validate ML models
• architects build world models, create data models

and architectures – that come as explicit artifacts
or as code

• developers write code and tests
… but may do all of the above!

Software Engineers!

12Alexander Pretschner

Total laymen who didn‘t code before („soccer dads“): nobody to be replaced

Knowledgeable but not trained („music teacher turned website developer“):
write simple programs, may indeed be replaced

Professionals but not trained in software („electrical engineers doing software“):
know what they are doing, understand business domain, probably will be assisted but not replaced

Professionals with serious SW engineering education: will be assisted but not replaced

These come at different levels of seniority

Flavors of Software Engineers

13Alexander Pretschner

14Alexander Pretschner

How Employment Develops

https://digitaleconomy.stanford.edu/publications/canaries-in-the-coal-mine/

• Software engineers perform different activities, creating various implicit or explicit artifacts
• Software engineers range from laymen to professionals with many shades
• Software engineers come with different skill levels and at different levels of seniority
• Software engineers work in a highly context-specific manner:

• Application domain
• Risk

• Safety or security criticality
• Ease of update
• Regulation
• „Private“ code vs. deployed products

• Level of „standardness“
• Trade-Offs

• Development process
• (Legacy) tech stack

So?

15Alexander Pretschner

Context factors

ActivitiesSkills

I. Software Engineers

II. Software Engineering

III. Where (I don‘t think) genAI can take over

Today‘s story

16Alexander Pretschner

Software implements „functions.“ Functions map input to output.

What is Software?

17Alexander Pretschner

Software implements „functions.“ Functions map input to output.
What a function is supposed to compute is described in a „specification.“
„Implementation“ is step-by-step by an algorithm or by a machine-learned model.

Crucial design principle: divide-et-impera. Break down a big problem into smaller problems. Repeat.

For every function, there are many different implementations. These implementations differ
• Structurally in how the original big problem was recursively broken down („refined“);
• W.r.t. the chosen algorithm or machine-learned model;
• Therefore w.r.t. resource consumption (time, memory) as different algorithms can implement the same function; or w.r.t.

correctness for ML models; and w.r.t. further extra-functional properties: maintainability, security

SW engineers take the underlying design decisions – there usually is not the one best decision!
SW engineers explicitly design trade-offs w.r.t. implicit or explicit goals. Who comes up with these goals?

What is Software?

18Alexander Pretschner

Specifications are Functions

19Alexander Pretschner

I O
𝑓𝑓 𝐼𝐼 ⊆ 𝑂𝑂

Specification: Use cases

20Alexander Pretschner

I O

𝐼𝐼 = 𝐼𝐼1 ∪ ⋯∪ 𝐼𝐼𝑛𝑛 𝑂𝑂 = 𝑂𝑂1 ∪ ⋯∪ 𝑂𝑂𝑚𝑚

𝑓𝑓 𝐼𝐼1 ⊆ 𝑂𝑂1
𝑓𝑓 𝐼𝐼2 ⊆ 𝑂𝑂2
𝑓𝑓 𝐼𝐼3 ⊆ 𝑂𝑂2
𝑓𝑓 𝐼𝐼4 ⊆ 𝑂𝑂3
𝑓𝑓 𝐼𝐼5 ⊆ 𝑂𝑂4

Specification: Refinement

21Alexander Pretschner

I O

𝐼𝐼1 = 𝐼𝐼11 ∪ 𝐼𝐼12 ∪ 𝐼𝐼13
𝐼𝐼2 = 𝐼𝐼21 ∪ 𝐼𝐼22
𝐼𝐼3 = 𝐼𝐼31 ∪ 𝐼𝐼32 ∪ 𝐼𝐼33
…

𝑂𝑂1 = 𝑂𝑂11 ∪ 𝑂𝑂12
𝑂𝑂2 = 𝑂𝑂21 ∪ 𝑂𝑂22
…

𝑓𝑓 𝐼𝐼11 ⊆ 𝑂𝑂12
𝑓𝑓 𝐼𝐼12 ⊆ 𝑂𝑂11
𝑓𝑓 𝐼𝐼13 ⊆ 𝑂𝑂11
…

Specification: Refinement

22Alexander Pretschner

I O
𝑓𝑓 𝐼𝐼226 ⊆ 𝑂𝑂221

Top-down [70s]
 Linear, mathematically founded „stepwise refinement“: correct-by-design

Bottom-up [90s]
 Non-linear agile software development

In-between
 „Stepwise refinement“ à la Wirth: divide-et-impera – and get back where necessary

“Each refinement implies a number of design decisions based upon a set of design criteria. Among these criteria are efficiency, storage
economy, clarity, and regularity of structure. Students must be taught to be conscious of the involved decisions and to critically examine
and to reject solutions, sometimes even if they are correct as far as the result is concerned; they must learn to weigh the various aspects
of design alternatives in the light of these criteria. In particular, they must be taught to revoke earlier decisions, and to back up, if
neccessary even to the top. Relatively short sample problems will often suffice to illustrate this important point; it is not necessary to
construct an operating system for this purpose.” [Wirth: Program Development by Stepwise Refinement, CACM 1971]

Approaches

23Alexander Pretschner

Refinement of Software Artifacts

24Alexander Pretschner

User Needs

System Specification

Architecture

Implementation ⊆

⊆

⊆

User Requirements
System Requirements

⊆

⊆

⊆

… the Waterfall

25Alexander Pretschner

W. Royce: Managing the development of large software systems
Proc. IEEE WESCON, pp. 1-9, 1970

No Linear Process: Change and Error

26Alexander Pretschner

W. Royce: Managing the development of large software systems

Proc. IEEE WESCON, pp. 1-9, 1970

Linear refinement assumes a more or less complete set of requirements upfront
and then correct refinement decisions in each step

In reality: requirements often not known up-front and changing

Agility adresses lack of knowledge and therefore lack of
linearity and plannability via ongoing customer/user interactions

„Requirements specification“ iteratively co-evolves with code, and
necessarily does so!

Agility

27Alexander Pretschner

Understanding over Time

28Alexander Pretschner

For non-trivial and not entirely standard systems, it is not the case that we write down a specification or a
prompt upfront, then start coding or push a button, and get the system implementation!

Instead, as we iteratively develop the system, we understand what we want to build – in terms of
functionality, in terms of structure, in terms of extra-functional properties.

And we decide on design alternatives.

Which we can only do if we understand the business domain –
and software engineering: the impact of different design decisions

This can be assisted but not replaced by genAI.

… and the Point?

29Alexander Pretschner

SW engineering is about taking decisions and trade-offs

Each refinement implies a number of design decisions based upon a set of design criteria. Among these criteria are efficiency,
storage economy, clarity, and regularity of structure. Students must be taught to be conscious of the involved decisions and to
critically examine and to reject solutions, sometimes even if they are correct as far as the result is concerned; they must learn to weigh
the various aspects of design alternatives in the light of these criteria. In particular, they must be taught to revoke earlier decisions, and to
back up, if necessary even to the top. Relatively short sample problems will often suffice to illustrate this important point; it is not
necessary to construct an operating system for this purpose. [Wirth 1971]

Understanding and Designing

30Alexander Pretschner

SW engineering is about taking decisions and trade-offs

Each refinement implies a number of design decisions based upon a set of design criteria. Among these criteria are efficiency,
storage economy, clarity, and regularity of structure. Students must be taught to be conscious of the involved decisions and to
critically examine and to reject solutions, sometimes even if they are correct as far as the result is concerned; they must learn to weigh
the various aspects of design alternatives in the light of these criteria. In particular, they must be taught to revoke earlier decisions, and to
back up, if necessary even to the top. Relatively short sample problems will often suffice to illustrate this important point; it is not
necessary to construct an operating system for this purpose. [Wirth 1971]

Who takes this decision? Possibly an LLM.
But w.r.t. which goal? And who understands and specifies this goal?

Understanding and Designing

31Alexander Pretschner

Technical and Business Domains

32Alexander Pretschner

Software Engineers need to understand technology and business domains

Technological abstractions captured in frameworks/languages/patterns
… and in the developers‘ heads
Works well.

Business domain captured in the developers‘ heads
… and in DSLs/rule sets/analysis patterns
Didn‘t work so well pre-LLM. How would it? Too much contextual variation.

I. Software Engineers

II. Software Engineering

III. Where (I don‘t think) genAI can take over

Today‘s story

33Alexander Pretschner

Describe functionality and structural preferences as a prompt.

Add further context to prompt – for both technology and business
domains, in terms of functionality, extra-functional properties, trade-offs.

Then either generate code or intermediate format.
Verify result.
Iterate.

More context usually improves AI-generated code.

AI-Generated Code

34Alexander Pretschner

Describe functionality and structural preferences as a prompt.

Add further context to prompt – for both technology and business
domains, in terms of functionality, extra-functional properties, trade-offs.

Then either generate code or intermediate format. Iterate. More context usually improves AI-generated code.

But an AI cannot know what we want.
It can only pick a statistically likely (== most standard) solution.
Junior or non-professional SW engineers do the same.
In contrast, senior and professional SW engineers understand
what is non-standard in their specific context!

AI-Generated Code

35Alexander Pretschner

Hallucinations,Trust,
Verification

36Alexander Pretschner

creation

verification

Co-creation: Start with rough specification – get partly inadequate results – verify result and fill in/correct
information – iterate

Think as you Specify – Think as you Code - Verify as you Think

37Alexander Pretschner

Under which circumstances is it
faster/better/more convenient to iterate on a
specification and check the generated code
than to directly iterate on the code?

Think as you Specify

38Alexander Pretschner

Cost Effectiveness

39Alexander Pretschner

creation

verification

without genAI with genAI:
not cost-effective

with genAI:
cost-effective

effort effort for
acceptable risk of

undetected hallucination

Today‘s answer: Depends!

Works well for standard problems (specifically, „boilerplate code“);
helps with exact usage of libraries; creates simple scripts; etc.

Often works well for coming up with a first idea for a solution;
or suggesting a re-structuring of the code.
Requires interaction though!

Then, grossly differing statements about productivity gains.
Likely reason: vastly differing kinds of software.

Cost Effectiveness, Productivity Gains

40Alexander Pretschner

https://arxiv.org/abs/2507.09089
Slowdown of 19% observed

https://arxiv.org/pdf/2410.12944
Speedup of 21% observed

https://arxiv.org/abs/2507.09089
https://arxiv.org/pdf/2410.12944

The more standard a problem, the better AI-generated results will be, at least in terms of functional
correctness. Simple low-risk problems can be off-loaded to the machine. The machine may also help with
refining a big problem into small problems.

But software engineering is about
- understanding what is to be implemented … which needs to be done in an iterative way; and about
- taking decisions about trade-offs (e.g., „security vs. performance“)

How would an AI „decide“? Is it ethical to not know which decisions were taken and why?
This conflicts with (my understanding of) digital humanism in that we then refuse agency and dodge
responsibility. Machines cannot assume responsibility.

 (But do all human software engineers know what they are doing? Different debate on responsibility …)

Beyond Economics

41Alexander Pretschner

Software development: iterative process of „refinements“ with learning and possible corrections

Many possible refinements at any stage of development
• Differ w.r.t. various properties
• Goals determine whether one refinement is „correct,“ or more „adequate“ than another
• Need to take decisions. Difficult upfront: problem necessarily not sufficiently well understood yet

If correctness impossible to determine, or goals not explicit, or trade-offs unclear,
why pick one rather than another?
→ AI (and a junior or unaware developer) will blindly pick any: a statistically likely refinement

Does not matter sometimes. Does matter sometimes.

In Sum: Why we need Humans

42Alexander Pretschner

	Will generative AI replace software engineers?��
	Isn‘t this trivial?
	Today‘s story
	Today‘s story
	Software-Intensive Systems
	Software Engineers?
	Software Engineers?
	Software Engineers?
	Software Engineers?
	Software Engineers?
	Software Engineers!
	Software Engineers!
	Flavors of Software Engineers
	How Employment Develops
	So?
	Today‘s story
	What is Software?
	What is Software?
	Specifications are Functions
	Specification: Use cases
	Specification: Refinement
	Specification: Refinement
	Approaches
	Refinement of Software Artifacts
	… the Waterfall
	No Linear Process: Change and Error
	Agility
	Understanding over Time
	… and the Point?
	Understanding and Designing
	Understanding and Designing
	Technical and Business Domains
	Today‘s story
	AI-Generated Code
	AI-Generated Code
	Hallucinations,Trust, �Verification
	Think as you Specify – Think as you Code - Verify as you Think
	Think as you Specify
	Cost Effectiveness
	Cost Effectiveness, Productivity Gains
	Beyond Economics
	In Sum: Why we need Humans

