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Learning is to be able to generalise

[Figure from Wikipedia]

From examples, what can a system
learn about the underlying
phenomenon?

Memorising the already seen data is
usually bad −→ overfitting

Generalisation is the ability to
’perform’ well on unseen data.
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Statistical Learning Theory is about high confidence

For a fixed algorithm, function class and sample size, generating random
samples −→ distribution of test errors

Focusing on the mean of the error distribution?

. can be misleading: learner only has one sample

Statistical Learning Theory: tail of the distribution

. finding bounds which hold with high probability

over random samples of size m

Compare to a statistical test – at 99% confidence level

. chances of the conclusion not being true are less than 1%

PAC: probably approximately correct [59]
Use a ‘confidence parameter’ δ: Pm[large error] 6 δ
δ is the probability of being misled by the training set

Hence high confidence: Pm[approximately correct] > 1 − δ
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Error distribution picture
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Mathematical formalization

Learning algorithm A : Zm → H

• Z = X× Y

X = set of inputs
Y = set of outputs (e.g.
labels)

• H = hypothesis class
= set of predictors

(e.g. classifiers)

Training set (aka sample): Sm = ((X1,Y1), . . . , (Xm,Ym))
a finite sequence of input-output examples.
Classical assumptions:

• A data-generating distribution P over Z.
• Learner doesn’t know P, only sees the training set.

• The training set examples are i.i.d. from P: Sm ∼ Pm

. these can be relaxed (but not in this talk)
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What to achieve from the sample?

Use the available sample to:

1 learn a predictor

2 certify the predictor’s performance

Learning a predictor:

• algorithm driven by some learning principle

• informed by prior knowledge resulting in inductive bias

Certifying performance:

• what happens beyond the training set

• generalization bounds

Actually these two goals interact with each other!
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Risk (aka error) measures

A loss function `(h(X ),Y ) is used to measure the discrepancy between
a predicted output h(X ) and the true output Y .

Empirical risk: Rin(h) = 1
m

∑m
i=1 `(h(Xi),Yi)

(in-sample)

Theoretical risk: Rout(h) = E
[
`(h(X ),Y )

]
(out-of-sample)

Examples:

• `(h(X ),Y ) = 1[h(X ) 6= Y ] : 0-1 loss (classification)

• `(h(X ),Y ) = (Y − h(X ))2 : square loss (regression)

• `(h(X ),Y ) = (1 − Yh(X ))+ : hinge loss

• `(h(X ),Y ) = − log(h(X )) : log loss (density estimation) TODO
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Before PAC-Bayes

Single hypothesis h (building block):

with probability > 1 − δ, Rout(h) 6 Rin(h) +
√

1
2m log

( 1
δ

)
.

Finite function class H (worst-case approach):

w.p. > 1 − δ, ∀h ∈ H, Rout(h) 6 Rin(h) +
√

1
2m log

(
|H|
δ

)
Structural risk minimisation: data-dependent hypotheses hi

associated with prior weight pi

w.p. > 1 − δ, ∀hi ∈ H, Rout(hi) 6 Rin(hi) +

√
1

2m log
(

1
piδ

)
Uncountably infinite function class: VC dimension, Rademacher
complexity...

These approaches are suited to analyse the performance of individual
functions, and take some account of correlations.
−→ Extension: PAC-Bayes allows to consider distributions over
hypotheses.
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The PAC-Bayes framework

Before data, fix a distribution P ∈ M1(H) . ‘prior’

Based on data, learn a distribution Q ∈ M1(H) . ‘posterior’
Predictions:

• draw h ∼ Q and predict with the chosen h.
• each prediction with a fresh random draw.

The risk measures Rin(h) and Rout(h) are extended by averaging:

Rin(Q) ≡
∫
H Rin(h) dQ(h) Rout(Q) ≡

∫
H Rout(h) dQ(h)

KL(Q‖P) = E
h∼Q

ln Q(h)
P(h) is the Kullback-Leibler divergence.
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PAC-Bayes aka Generalised Bayes

”Prior”: exploration mechanism of H
”Posterior” is the twisted prior after confronting the data
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PAC-Bayes bounds vs. Bayesian learning

Prior

• PAC-Bayes: bounds hold for any distribution
• Bayes: prior choice impacts inference

Posterior

• PAC-Bayes: bounds hold for any distribution
• Bayes: posterior uniquely defined by prior and statistical model

Data distribution

• PAC-Bayes: bounds hold for any distribution
• Bayes: randomness lies in the noise model generating the output
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A General PAC-Bayesian Theorem
∆-function: “distance” between Rin(Q) and Rout(Q)

Convex function ∆ : [0, 1]× [0, 1]→ R.

General theorem (Bégin et al. [7, 8], Germain [21])

For any distribution D on X× Y, for any set H of voters, for any distribution
P on H, for any δ∈(0, 1], and for any ∆-function, we have, with probability at
least 1−δ over the choice of S ∼ Dm,

∀Q on H : ∆
(

Rin(Q),Rout(Q)
)
6

1
m

[
KL(Q‖P) + ln

I∆(m)

δ

]
,

where

I∆(m) = sup
r∈[0,1]

[
m∑

k=0

(m
k

)
r k(1−r)m−k︸ ︷︷ ︸
Bin
(

k ;m,r
) em∆( k

m , r)

]
.
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General theorem (Bégin et al. [7, 8], Germain [21])

For any distribution D on X× Y, for any set H of voters, for any distribution
P on H, for any δ∈(0, 1], and for any ∆-function, we have, with probability at
least 1−δ over the choice of S ∼ Dm,

∀Q on H : ∆
(

Rin(Q),Rout(Q)
)
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1
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Proof of the general theorem
General theorem

Pr
S∼Dm

(
∀Q on H : ∆

(
Rin(Q),Rout(Q)

)
≤≤≤ 1

m

[
KL(Q‖P) + ln

I∆(m)

δ

])
> 1−δ .

Proof ideas.

Change of Measure Inequality
For any P and Q on H, and for any measurable function φ : H→ R, we have

− ln
(

E
h∼P

eφ(h)
)

= − ln E
h∼Q

(
P(h)
Q(h)

eφ(h)

)
6 E

h∼Q
ln

(
Q(h)
P(h)

)
− E

h∼Q
φ(h)

= KL(Q‖P) − E
h∼Q
φ(h).

Markov’s inequality

for a random variable X satisfying X > 0

Pr (X > a)≤≤≤ E X
a ⇐⇒ Pr

(
X 6 E X

δ

)
≥≥≥ 1−δ .
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Proof of the general theorem

Probability of observing k misclassifications among m examples
Given a voter h, consider a binomial variable of m trials with success Rout(h):

Pr
S∼Dm

(
Rin(h)= k

m

)
=

(
m
k

)(
Rout(h)

)k(
1 − Rout(h)

)m−k
= Bin

(
k ;m,Rout(h)

)
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PrS∼Dm

(
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m

[
KL(Q‖P) + ln
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> 1−δ .

Proof.

m · ∆
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E
h∼Q

Rin(h), E
h∼Q

Rout(h)
)

Jensen’s Inequality 6 E
h∼Q

m · ∆
(

Rin(h),Rout(h)
)

Change of measure 6 KL(Q‖P) + ln E
h∼P

em∆
(

Rin(h),Rout(h)
)

Markov’s Inequality ≤≤≤ 1−δ KL(Q‖P) + ln
1
δ

E
S ′∼Dm

E
h∼P

em·∆(Rin(h),Rout(h))

Expectation swap = KL(Q‖P) + ln
1
δ

E
h∼P

E
S ′∼Dm

em·∆(Rin(h),Rout(h))

Binomial law = KL(Q‖P) + ln
1
δ

E
h∼P

m∑
k=0

Bin
(
k ;m,Rout(h)

)
em·∆( k

m ,Rout(h))

Supremum over risk 6 KL(Q‖P) + ln
1
δ

sup
r∈[0,1]

[
m∑

k=0

Bin
(
k ;m, r

)
em∆( k

m , r)

]

= KL(Q‖P) + ln
1
δ
I∆(m) .
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General theorem

Pr
S∼Dm

(
∀Q on H : ∆

(
Rin(Q),Rout(Q)

)
≤≤≤ 1

m

[
KL(Q‖P) + ln

I∆(m)

δ

])
> 1−δ .

Corollary
[...] with probability at least 1−δ over the choice of S ∼ Dm, for all Q on H :

(a) kl
(

Rin(Q),Rout(Q)
)
≤≤≤ 1

m

[
KL(Q‖P) + ln 2

√
m
δ

]
, Langford and Seeger [31]

(b) Rout(Q) ≤≤≤ Rin(Q)) +

√
1

2m

[
KL(Q‖P) + ln 2

√
m
δ

]
, McAllester [40, 43]

(c) Rout(Q) ≤≤≤ 1
1−e−c

(
c · Rin(Q) + 1

m

[
KL(Q‖P) + ln 1

δ

])
, Catoni [11]

(d) Rout(Q) ≤≤≤ Rin(Q) + 1
λ

[
KL(Q‖P) + ln 1

δ
+ f (λ,m)

]
. Alquier et al. [4]

kl(q, p) def
= q ln q

p + (1 − q) ln 1−q
1−p

> 2(q − p)2 ,

∆c(q, p)
def
= − ln[1 − (1 − e−c) · p] − c · q ,

∆λ(q, p)
def
= λ

m (p − q) .
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Proof of the Langford/Seeger bound

Follows immediately from General Theorem by choosing ∆(q, p) = kl(q, p).

Indeed, in that case we have

E
S∼Dm

E
h∼P

em∆(RS(h),R(h)) = E
h∼P

E
S∼Dm

(
RS(h)
R(h)

)mRS(h)( 1−RS(h)
1−R(h)

)m(1−RS(h))

= E
h∼P

∑m
k=0 Pr

S∼Dm(RS(h)= k
m )
( k

m
R(h)

)k(
1− k

m
1−R(h)

)m−k

=
∑m

k=0 (m
k )(k/m)k (1−k/m)m−k , (1)

6 2
√

m .
�

Note that, in Line (1) of the proof, Pr
S∼Dm

(
RS(h) = k

m

)
is replaced by the probability

mass function of the binomial.

This is only true if the examples of S are drawn iid. (i.e., S ∼ Dm)

So this result is no longer valid in the non iid case, even if General Theorem is.
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This is only true if the examples of S are drawn iid. (i.e., S ∼ Dm)

So this result is no longer valid in the non iid case, even if General Theorem is.
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Linear classifiers

We will choose the prior and posterior distributions to be Gaussians
with unit variance.

The prior P will be centered at the origin with unit variance

The specification of the centre for the posterior Q(w,µ) will be by a
unit vector w and a scale factor µ.
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PAC-Bayes Bound for SVM (1/2)

P

0

W

Prior P is Gaussian N(0, 1)
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PAC-Bayes Bound for SVM (1/2)

P

0

w

W

Q

µ

Prior P is Gaussian N(0, 1)

Posterior is in the direction w

at distance µ from the origin

Posterior Q is Gaussian
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PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL(Q̂S(w,µ)‖ QD(w,µ) ) 6
KL(P‖Q(w,µ)) + ln m+1

δ

m

QD(w,µ) true performance of the stochastic classifier

SVM is deterministic classifier that exactly corresponds to
sgn

(
Ec∼Q(w,µ)[c(x)]

)
as centre of the Gaussian gives the same

classification as halfspace with more weight.

Hence its error bounded by 2QD(w,µ), since as observed above if
x misclassified at least half of c ∼ Q err.
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PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL( Q̂S(w,µ) ‖QD(w,µ)) 6
KL(P‖Q(w,µ)) + ln m+1

δ

m

Q̂S(w,µ) stochastic measure of the training error

Q̂S(w,µ) = Em[F̃ (µγ(x, y))]

γ(x, y) = (ywTφ(x))/(‖φ(x)‖‖w‖)
F̃ (t) = 1 − 1√

2π

∫t
−∞ e−x2/2dx
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PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL(Q̂S(w,µ)‖QD(w,µ)) 6
KL(P‖Q(w,µ)) + ln m+1

δ

m

Prior P ≡ Gaussian centered on the origin

Posterior Q ≡ Gaussian along w at a distance µ from the origin

KL(P‖Q) = µ2/2

25 66



PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL(Q̂S(w,µ)‖QD(w,µ)) 6
KL(P‖Q(w,µ)) + ln m+1

δ

m

Prior P ≡ Gaussian centered on the origin

Posterior Q ≡ Gaussian along w at a distance µ from the origin

KL(P‖Q) = µ2/2

25 66



PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL(Q̂S(w,µ)‖QD(w,µ)) 6
KL(P‖Q(w,µ)) + ln m+1

δ

m

Prior P ≡ Gaussian centered on the origin

Posterior Q ≡ Gaussian along w at a distance µ from the origin

KL(P‖Q) = µ2/2

25 66



PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL(Q̂S(w,µ)‖QD(w,µ)) 6
KL(P‖Q(w,µ)) + ln m+1

δ

m

Prior P ≡ Gaussian centered on the origin

Posterior Q ≡ Gaussian along w at a distance µ from the origin

KL(P‖Q) = µ2/2

25 66



PAC-Bayes Bound for SVM (2/2)

Linear classifiers performance may be bounded by

KL(Q̂S(w,µ)‖QD(w,µ)) 6

KL(P‖Q(w,µ)) + ln m+1

δ

m

δ is the confidence

The bound holds with probability 1 − δ over the random i.i.d.
selection of the training data.
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Form of the SVM bound

Note that bound holds for all posterior distributions so that we can
choose µ to optimise the bound

If we define the inverse of the KL by

KL−1(q,A) = max{p : KL(q‖p) 6 A}

then have with probability at least 1 − δ

Pr (〈w,φ(x)〉 6= y) 6 2min
µ

KL−1

(
Em[F̃ (µγ(x, y))],

µ2/2 + ln m+1
δ

m

)
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Gives SVM Optimisation

Primal form:

minw,ξi

[1
2‖w‖

2 + C
∑m

i=1 ξi
]

s.t. yiwTφ(xi) > 1 − ξi i = 1, . . . ,m

ξi > 0 i = 1, . . . ,m

Dual form:

maxα

[∑m
i=1 αi −

1
2

∑m
i,j=1 αiαjyiyjκ(xi , xj)

]
s.t. 0 6 αi 6 C i = 1, . . . ,m

where κ(xi , xj) = 〈φ(xi),φ(xj)〉 and 〈w,φ(x)〉 =
∑m

i=1 αiyiκ(xi , x).
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Slack variable conversion

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3
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Data- or distribution-dependent priors

An important component in the PAC-Bayes analysis is the choice of
the prior distribution

The results hold whatever the choice of prior, provided that it is
chosen before seeing the data sample

Are there ways we can choose a ‘better’ prior?
Will explore:

using part of the data to learn the prior for SVMs, but also more
interestingly and more generally
defining the prior in terms of the data generating distribution (aka
localised PAC-Bayes).

30 66
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Learning the prior (1/3)

Bound depends on the distance between prior and posterior

Better prior (closer to posterior) would lead to tighter bound

Learn the prior P with part of the data

Introduce the learnt prior in the bound

Compute stochastic error with remaining data

31 66



Learning the prior (1/3)

Bound depends on the distance between prior and posterior

Better prior (closer to posterior) would lead to tighter bound

Learn the prior P with part of the data

Introduce the learnt prior in the bound

Compute stochastic error with remaining data

31 66



Learning the prior (1/3)

Bound depends on the distance between prior and posterior

Better prior (closer to posterior) would lead to tighter bound

Learn the prior P with part of the data

Introduce the learnt prior in the bound

Compute stochastic error with remaining data

31 66



Learning the prior (1/3)

Bound depends on the distance between prior and posterior

Better prior (closer to posterior) would lead to tighter bound

Learn the prior P with part of the data

Introduce the learnt prior in the bound

Compute stochastic error with remaining data

31 66



Learning the prior (1/3)

Bound depends on the distance between prior and posterior

Better prior (closer to posterior) would lead to tighter bound

Learn the prior P with part of the data

Introduce the learnt prior in the bound

Compute stochastic error with remaining data

31 66



New prior for the SVM (3/3)

w r

0

W

Solve SVM with subset of patterns
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New prior for the SVM (3/3)

w rµ

0

Q w

W

P

µ

Solve SVM with subset of patterns

Prior in the direction wr

Posterior like PAC-Bayes Bound
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New prior for the SVM (3/3)

w r

distance

between

distributions

µ

0

Q w

W

P

µ

Solve SVM with subset of patterns

Prior in the direction wr

Posterior like PAC-Bayes Bound

New bound depends on KL(P‖Q)
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New Bound for the SVM (2/3)

SVM performance may be tightly bounded by

KL(Q̂S(w,µ)‖ QD(w,µ) ) 6
0.5‖µw − ηwr‖2 + ln (m−r+1)J

δ

m − r

QD(w,µ) true performance of the classifier
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Prior-SVM

New bound proportional to ‖µw − ηwr‖2

Classifier that optimises the bound
Optimisation problem to determine the p-SVM

minw,ξi

[
1
2‖w − wr‖2 + C

∑m−r
i=1 ξi

]
s.t. yiwTφ(xi) > 1 − ξi i = 1, . . . ,m − r

ξi > 0 i = 1, . . . ,m − r

The p-SVM is only solved with the remaining points
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Bound for p-SVM

1 Determine the prior with a subset of the training examples to obtain
wr

2 Solve p-SVM and obtain w

3 Margin for the stochastic classifier Q̂s

γ(xj , yj) =
yjwTφ(xj)

‖φ(xj)‖‖w‖
j = 1, . . . ,m − r

4 Linear search to obtain the optimal value of µ. This introduces an
insignificant extra penalty term
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Bound for η-prior-SVM

Prior is elongated along the line of wr but spherical with variance 1
in other directions

Posterior again on the line of w at a distance µ chosen to optimise
the bound.
Resulting bound depends on a benign parameter τ determining the
variance in the direction wr

KL(Q̂S\R(w,µ)‖QD(w,µ)) 6

0.5(ln(τ2) + τ−2 − 1 + P‖wr (µw − wr )
2/τ2 + P⊥wr

(µw)2) + ln(m−r+1
δ

)

m − r
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η-Prior-SVM

Consider using a prior distribution P that is elongated in the
direction of wr

This will mean that there is low penalty for large projections onto
this direction

Translates into an optimisation:

min
v,η,ξi

[
1
2
‖v‖2 + C

m−r∑
i=1

ξi

]

subject to

yi(v + ηwr )
Tφ(xi) > 1 − ξi i = 1, . . . ,m − r

ξi > 0 i = 1, . . . ,m − r
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Model Selection with the new bound: setup

Comparison of 10-fold Xvalidation, PAC-Bayes Bound and the Prior
PAC-Bayes Bound

UCI datasets
Select C and σ that lead to minimum Classification Error (CE)

For 10-F XV select the pair that minimize the validation error
For PAC-Bayes Bound and Prior PAC-Bayes Bound select the pair
that minimize the bound
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Results

Classifier
SVM ηPrior SVM

Problem 2FCV 10FCV PAC PrPAC PrPAC τ-PrPAC

digits Bound – – 0.175 0.107 0.050 0.047
TE 0.007 0.007 0.007 0.014 0.010 0.009

waveform Bound – – 0.203 0.185 0.178 0.176
TE 0.090 0.086 0.084 0.088 0.087 0.086

pima Bound – – 0.424 0.420 0.428 0.416
TE 0.244 0.245 0.229 0.229 0.233 0.233

ringnorm Bound – – 0.203 0.110 0.053 0.050
TE 0.016 0.016 0.018 0.018 0.016 0.016

spam Bound – – 0.254 0.198 0.186 0.178
TE 0.066 0.063 0.067 0.077 0.070 0.072

Average TE 0.0846 0.0834 0.081 0.0852 0.0832 0.0832
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Take home messages

Bounds are remarkably tight: for final column average factor
between bound and TE is under 3.

Model selection from the bounds is as good as 10FCV: in fact all but
one of the PAC-Bayes model selections give better averages for TE.
The better bounds do not appear to give better model selection -
best model selection is from the simplest bound.

A. Ambroladze, E. Parrado-Hernández, and J. Shawe-Taylor. Tighter
PAC-Bayes bounds. In Advances in Neural Information Processing
Systems 18, (2006) Pages 9-16.

P. Germain, A. Lacasse, F. Laviolette and M. Marchand.
PAC-Bayesian learning of linear classifiers, in Proceedings of the
26nd International Conference on Machine Learning (ICML’09,
Montréal, Canada.). ACM Press (2009), 382, Pages 453-460.
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Distribution-defined priors

Consider P and Q are Gibbs-Boltzmann distributions

P(h) :=
1

Z ′
e−γ risk(h) Q(h) :=

1
Z

e−γ ˆriskS(h)

These distributions are hard to work with since we cannot apply the
bound to a single weight vector, but the bounds can be very tight:

KL+(Q̂S(γ)||QD(γ)) 6
1
m

(
γ√
m

√
ln

8
√

m
δ

+
γ2

4m
+ ln

4
√

m
δ

)
with the only uncertainty the dependence on γ.

O. Catoni. A PAC-Bayesian approach to adaptive classification. Preprint n.840,

Laboratoire de Probabilités et Modèles Aléatoires, Universités Paris 6 and Paris 7,

2003.

G. Lever, F. Laviolette, J. Shawe-Taylor. Distribution-Dependent PAC-Bayes Priors.

Proceedings of the 21st International Conference on Algorithmic Learning Theory

(ALT 2010), 119-133.
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Observations

We cannot compute the prior distribution P or even sample from it:

Note that this would not be possible to consider in normal Bayesian
inference;
Trick here is that the error measures only depend on the posterior Q,
while the bound depends on KL between posterior and prior: an
estimate of this KL is made without knowing the prior explicitly

the Gibbs distributions are hard to sample from so not easy to work
with this bound.

48 66



Observations

We cannot compute the prior distribution P or even sample from it:
Note that this would not be possible to consider in normal Bayesian
inference;

Trick here is that the error measures only depend on the posterior Q,
while the bound depends on KL between posterior and prior: an
estimate of this KL is made without knowing the prior explicitly

the Gibbs distributions are hard to sample from so not easy to work
with this bound.

48 66



Observations

We cannot compute the prior distribution P or even sample from it:
Note that this would not be possible to consider in normal Bayesian
inference;
Trick here is that the error measures only depend on the posterior Q,
while the bound depends on KL between posterior and prior: an
estimate of this KL is made without knowing the prior explicitly

the Gibbs distributions are hard to sample from so not easy to work
with this bound.

48 66



Observations

We cannot compute the prior distribution P or even sample from it:
Note that this would not be possible to consider in normal Bayesian
inference;
Trick here is that the error measures only depend on the posterior Q,
while the bound depends on KL between posterior and prior: an
estimate of this KL is made without knowing the prior explicitly

the Gibbs distributions are hard to sample from so not easy to work
with this bound.

48 66



Other distribution defined priors

An alternative distribution defined prior for an SVM is to place
symmetrical Gaussian at the weight vector:
wp = E(x,y)∼D(yφφφ(x)) to give distributions that are easier to work
with, but results not impressive...

What if we were to take the expected weight vector returned from a
random training set of size m: then the KL between posterior and
prior is related to the concentration of weight vectors from different
training sets

This is connected to stability...
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Stability
Uniform hypothesis sensitivity β at sample size m:

‖A(z1:m) − A(z ′1:m)‖ 6 β
∑m

i=1 1[zi 6= z ′i ]

(z1, . . . , zm) (z′1, . . . , z
′
m)

A(z1:m) ∈ H normed space

wm = A(z1:m) ‘weight vector’

Lipschitz

smoothness

Uniform loss sensitivity β at sample size m:

|`(A(z1:m), z) − `(A(z ′1:m), z)| 6 β
∑m

i=1 1[zi 6= z ′i ]

worst-case

data-insensitive

distribution-insensitive

Open: data-dependent?
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Generalization from Stability

If A has sensitivity β at sample size m, then for any δ ∈ (0, 1),

w.p. > 1 − δ, Rout(h) 6 Rin(h) + ε(β,m, δ)

(e.g. Bousquet & Elisseeff)

the intuition is that if individual examples do not affect the loss of an
algorithm then it will be concentrated

can be applied to kernel methods where β is related to the
regularisation constant, but bounds are quite weak

question: algorithm output is highly concentrated
=⇒ stronger results?
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Stability + PAC-Bayes I

If A has uniform hypothesis stability β at sample size n, then
for any δ ∈ (0, 1), w.p. > 1 − 2δ,

KL
(
Rin(Q)‖Rout(Q)

)
6

nβ2

2σ2

(
1 +

√
1
2 log

( 1
δ

) )2
+ log

(n+1
δ

)
n

Gaussian randomization

• P = N(E[Wn],σ
2I)

• Q = N(Wn,σ
2I)

•KL(Q‖P) =
1

2σ2 ‖Wn − E[Wn]‖2

Main proof components:

w.p. > 1 − δ, KL
(
Rin(Q)‖Rout(Q)

)
6

KL(Q‖Q0)+log
(

n+1
δ

)
n

w.p. > 1 − δ, ‖Wn − E[Wn]‖ 6
√

n β
(

1 +
√

1
2 log

( 1
δ

))
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Performance of deep NNs

Deep learning has thrown down a challenge to SLT: very good
performance with extremely complex hypothesis classes

For SVMs we can think of the margin as capturing an accuracy with
which we need to estimate the weights

If we have a deep network solution with a wide basin of good
performance we can take a similar approach using PAC-Bayes with
a broad posterior around the solution
(Dziugaite and Roy + Neyshabur) have derived some of the tightest
deep learning bounds in this way

by training to expand the basin of attraction
hence not measuring good generalisation of normal training
D&R have also tried to apply the Lever et al. bound but observed
cannot measure generalisation correctly for deep networks as has no
way of distinguishing between successful fitting of true and random
labels

There have also been suggestions that stability of SGD is important
in obtaining good generalization
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Deep Network Training Experiments

Use part of the data for training a prior (as with SVM experiments)

Use second part of data to perform an optimisation of a PAC-Bayes
bound

Different ways to choose approximations to the KL term between
empirical and true risk: the relaxed Pinsker inequality reads:

kl(p̂‖p) > 2(p − p̂)2 for p̂, p ∈ (0, 1), (fclassic) (2)

while the refined Pinsker inequality takes the form:

kl(p̂‖p) > (p − p̂)2

2p
for p̂, p ∈ (0, 1), p̂ < p. (fquad) (3)

fλ based on the λ bound and fbbb based on variational inference.
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Model Selection Results
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Figure: Model selection results from more than 600 runs with different
hyper-parameters. The architecture used is a CNN with Gaussian
data-dependent priors. We use a reduced subset of MNIST for these
experiments (10% of training data).
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Training and Generalisation Results
Setup Risk cert. Stch. pred. Det. pred. Ens. pred. Prior

Arch. Prior Obj. `x-e `01 x-e 01 err. x-e 01 err. x-e 01 err. 01 err.

FCN

Rand.Init.
(Gaussian)

fquad .2033 .3155 .0268 .0921 .0137 .0558 .0007 .0572 .8792
flambda .2326 .3275 .0211 .0732 .0077 .0429 .0004 .0448 .8792
fclassic .1749 .3304 .0407 .1411 .0204 .0851 .0009 .0868 .8792
fbbb .5163 .5516 .0088 .0293 .0038 .0172 .0003 .0178 .8792

Learnt
(Gaussian)

fquad .0146 .0279 .0084 .0202 .0032 .0186 .0002 .0189 .0202
flambda .0201 .0354 .0082 .0196 .0071 .0185 .0001 .0185 .0202
fclassic .0141 .0284 .0101 .0230 .0089 .0189 .0002 .0191 .0202
fbbb .0788 .0968 .0063 .0179 .0066 .0153 .0001 .0153 .0202

- ferm - - - - .0101 .0152 - - -

CNN

Rand.Init.
(Gaussian)

fquad .1453 .2165 .0143 .0513 .0062 .0257 .0003 .0261 .9478
flambda .1583 .2202 .0109 .0397 .0056 .0207 .0003 .0211 .9478
fclassic .1260 .2277 .0253 .0869 .0111 .0425 .0006 .0421 .9478
fbbb .3400 .3645 .0039 .0154 .0016 .0088 .0001 .0092 .9478

Learnt
(Gaussian)

fquad .0078 .0155 .0045 .0104 .0003 .0105 .0001 .0104 .0104
flambda .0095 .0186 .0044 .0106 .0047 .0098 .0000 .0100 .0104
fclassic .0083 .0166 .0049 .0123 .0048 .0103 .0001 .0103 .0104
fbbb .0447 .0538 .0040 .0104 .0043 .0082 .0002 .0082 .0104

- ferm - - - - .0081 .0092 - - -

Table: MNIST using Gaussian priors. The table includes two architectures (FCN
and CNN), two priors (a data-free prior , and a data-dependent prior ) and four
training objectives.
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Training and Generalisation Results
Setup Risk cert. Stch. pred. Det. pred. Ens. pred. Prior

Arch. Prior Obj. `x-e `01 x-e 01 err. x-e 01 err. x-e 01 err. 01 err.

CNN
(9

layers)

Learnt
(50%
data)

fquad .1296 .3034 .0903 .2452 .0726 .2439 .0024 .2413 .2518
flambda .1742 .3730 .0689 .2307 .0609 .2225 .0018 .2133 .2518
fclassic .1173 .2901 .0931 .2537 .0952 .2437 .0025 .2332 .2518
fbbb .8096 .8633 .0715 .2198 .0735 .2160 .0017 .2130 .2518

Learnt
(70%
data)

fquad .1017 .2502 .0816 .2137 .0928 .2137 .0023 .2100 .2169
flambda .1414 .3128 .0708 .2081 .0767 .2061 .0021 .2049 .2169
fclassic .0957 .2377 .0862 .2161 .0827 .2167 .0021 .2135 .2169
fbbb .6142 .6965 .0708 .1979 .0562 .1992 .0019 .1944 .2169

- ferm - - - - .1400 .1946 - - -

CNN
(15 layers)

Learnt
(50%
data)

fquad .0867 .2174 .0584 .1668 .0538 .1662 .0014 .1653 .1688
flambda .1217 .2707 .0506 .1618 .0417 .1639 .0015 .1622 .1688
fclassic .0782 .1954 .0652 .1686 .0594 .1692 .0013 .1674 .1688
fbbb .6069 .7066 .0468 .1553 .0412 .1530 .0012 .1517 .1688

Learnt
(70%
data)

fquad .0756 .1806 .0559 .1463 .0391 .1469 .0016 .1449 .1490
flambda .0922 .2121 .0500 .1437 .0507 .1449 .0012 .1438 .1490
fclassic .0703 .1667 .0615 .1475 .0551 .1480 .0010 .1476 .1490
fbbb .4481 .5572 .0455 .1413 .0395 .1405 .0008 .1409 .1490

- ferm - - - - .0957 .1413 - - -

Table: Train and test set results on CIFAR-10 using Gaussian priors, three deep
CNN architectures and two percentages of data used to build the
data-dependent prior (50% and 70%, i.e. 25.000 and 35.000 examples).
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A flexible framework

Since 1997, PAC-Bayes has been successfully used in many machine
learning settings (this list is by no means exhaustive).

Statistical learning theory Audibert and Bousquet [6], Catoni [9, 10], Guedj
[25], Guedj and Pujol [27], Maurer [39], McAllester
[41, 42, 44, 45], Mhammedi et al. [46], Seeger [51, 52], Shawe-Taylor
and Williamson [56], Thiemann et al. [58]

SVMs & linear classifiers Germain et al. [19], Langford and Shawe-Taylor
[32], McAllester [44]

Supervised learning algorithms reinterpreted as bound minimizers
Ambroladze et al. [5], Germain et al. [22], Shawe-Taylor and Hardoon
[57]

High-dimensional regression Alquier and Biau [1], Alquier and Lounici
[2], Guedj and Robbiano [24], Guedj and Alquier [26], Li et al. [35]

Classification Catoni [9, 10], Lacasse et al. [30], Langford and Shawe-Taylor
[32], Parrado-Hernández et al. [49]
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A flexible framework

Transductive learning, domain adaptation Bégin et al. [7], Derbeko et al.
[12], Germain et al. [20], Nozawa et al. [48]

Non-iid or heavy-tailed data Alquier and Guedj [3], Holland [29], Lever et al.
[34], Seldin et al. [54, 55]

Density estimation Higgs and Shawe-Taylor [28], Seldin and Tishby [53]

Reinforcement learning Fard and Pineau [16], Fard et al. [17], Ghavamzadeh
et al. [23], Seldin et al. [54, 55]

Sequential learning Gerchinovitz [18], Li et al. [36]

Algorithmic stability, differential privacy Dziugaite and Roy [13, 14], London
[37], London et al. [38], Rivasplata et al. [50]

Deep neural networks Dziugaite and Roy [15], Letarte et al. [33], Neyshabur
et al. [47], Zhou et al. [60]

. . .
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Conclusions

One of key questions in learning is generalisation

Modern machine learning appears to contradict many of the
conclusions of statistical learning theory

Modelling learning in a more refined way leads to bounds that
overcome this contradiction and throw light on different ingredients
in achieving good test performance

Can drive algorithms to give improved bounds and state of the art
performance

Many other aspects of deep learning still remain to be captured by
theoretical analysis
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