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Al and (Lack of) Interpretability JXYU

JOHANNES KEPLER
UNIVERSITAT LINZ

Many Al systems can produce good performance
but cannot explain their decisions (— “ ")

Example:

When Kasparov lost a crucial game against Deep Blue in 1997, he
demanded to see ,the printouts”

meaning: to me how the computer derived its move
Impossible demand (— complexity of chess)

Chess programs play extremely well
but cannot explain their moves
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Deep Blue...

built 1985 to 1997
first at CMU, later at IBM
by Feng-hsiung Hsu

chess engine relying on
brute-force exhaustive search
chess-specific hardware
comparably simple evaluation function
(almost) no machine learning

— symbolic Al

... but is obviously a black-box model.
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Two Roads Towards Explainable Al J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

1. Interpreting Black-Box Models
Typical set-up: =

Black-Box

use the BB model as an oracle | - w  Taboied o Model
for training an interpretable
model l

labels

variants are possible

e.g., only approximate a local | .
. — > * Ite-Box
region (LIME, etC.) ___—~  generated | /_;‘l Model

) data AN /
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Finding Local Post-Hoc Explanations JXYU

JOHANNES KEPLER
UNIVERSITAT LINZ

Local Interpretable Model-Agnostic Explanations (LIME)
(Ribeiro, Singh, Guestrin 2017)

finds local explanations for a given example

Lokale Entscheidungsgrenze %

Key Ste pS : des White-Box-Modells “ )

generate examples
that are close to a
given test example

use the black-box
model for labeling
these examples

train a white-box
model from this
smaller dataset
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Two Roads Towards Explainable Al J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

2. Direct learning of Interpretable Models

Pros:

post-hoc explanations only PRI machine intelligence

approximate the BB model

instead, the same model is used for Stop explaining black box machine learning
explaining and for predicting models for high stakes decisions and use

interpretable models instead
C ons: Cynthia Rudin

current interpretable models often O | s mebinelearming modes arcurenty being usd for s takes dcision making troughoutsocity, s ro
models will alleviate some of the problems, but trying to explain black box models, rather than creating models that are inter-

ble in the first pl is like rpetuate bad i d iall ha . Th forward
not reach the same performance '*",mmm..,mmm";: Lyt T ol o Lo g
using inherently interpretable del key why explainable black bn:es should be a'mded in high-
where

stakes decisions, identifies challs toi hine learning, and provides

th ey a re n Ot a b I e to d ete Ct a n d u Se interpretable models could potentially replace bl:ck box models in criminal justice, healthcare and computer vision.
regularities that do not directly relate | | e e e e T

diction appli ations that d ply impact human lives. Many of  models that are lightly constrained in model form (such as models

to the target concept.

are often not as interpretable as they
seem
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A Sample Database J ! U

JOHANNES KEPLER
UNIVERSITAT LINZ

1 Primary Single M N

2 Primary Single M Y -

3 Primary Married M N +

4 University Divorced F N +

5 University Married F Y +

6 Secondary Single M N - Property of Interest
7 University Single F N - (“class variable”)
8 Secondary Divorced F N +

9 Secondary Single F Y +

10 Secondary Married M Y +

11 Primary Married F N +

12 Secondary Divorced M Y -

13 University Divorced F Y -

14 Secondary Divorced M N +
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Subgroup Discovery

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

Definition

“Given a population of individuals and a property of those individuals that we
are interested in,
'most interesting’, e.g., are as large as possible and have the most unusual
distributional characteristics with respect to the property of interest”

that are statistically

(Klosgen 1996; Wrobel 1997)

Examples

IF
AND
THEN

IF
THEN

IF
AND
THEN

MaritalStatus = single
Sex = male
Approved = no

MaritalStatus = married
Approved = yes

MaritalStatus = divorced
HasChildren = yes
Approved = no

yves (0/9) no (3/5)
/] |

ves (4/9) no (0/5)
N |

ves (0/9) no (2/5)
Z |

13
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Rule-Based Models and Explanations J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

Rule-based allow to seamlessly move between global models and
individual predictions
as Explanations:

each rule provides an explanation for a local neighborhood
(— subgroup discovery)

Rule Sets as Interpretable Global Models:

the rules are combined into a rule set that provides a global
explanation

Nevertheless, interpretability of rules should not be taken for
granted!
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Interpretability and Rule Learning J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

Rules (and decision trees) are often equated with interpretable
concepts
If we learn rules, then we are interpretable

Shorter models are more interpretable than longer models

Rules — the clearest, most explored and best understood form of knowledge
representation — are particularly important for data mining, as they offer the best
tradeoff between human and mach:ne understandability. This book presents the

Foundations of

Rule Learning

fundamentals of ru ' jgated in classical machingds

Note: The book has a 13-page index, which
does not contain entries for understandability,
interpretability, comprehensibility, or similar...

il
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Understandability vs. Rule Length J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

Conventional Rule learning algorithms tend to learn short rules
They favor to add conditions that exclude many negative examples

Short rules are better
long rules are less understandable, therefore short rules are preferable

short rules are more general, therefore (statistically) more reliable and
would have been easier to falsify on the training data

Shorter rules are not always better

Predictive Performance: Longer rules often cover the same number
of examples than shorter rules so that (statistically) there is no
preference for choosing one over the other

Understandability: In many cases, longer rules may be much more
intuitive than shorter rules

— we need to understand understandability!
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Are Shorter Explanations better?

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

Shorter explanations are often more
predictive than longer ones

but do not need to be
interpretable

Other dimensions:
Representativeness
Redundancy
Coherence
Structure

Kolmogorov Directions

HOW DO I GET TO0 YOUR
PLACE FROM LEXINGTON?

HM...

|
OK, STARTING FROM YOUR DRIVEWAY,
TRKE EVERY LEFT THAT DOESNT PUT
YOU ON A PRIME-NUMBERED HIGHWAY
OR STREET NAMED FOR A PRESIDENT

)

Source: https://www.xkcd.com/1155/

WHEN PEDPLE. ARS9K FOR STEP-BY-SIEP
DIRECTIONS, T WORRY THAT THERE. WILL
BE To0 MANY STEPS To REVIEMBER, S0
I TRYTO PUT THEM IN MINIMAL FORM.

(Thanks to Jilles Vreeken for the pointer)

19
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https://www.xkcd.com/1155/

Discriminative Rules J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

= Allow to quickly discriminate an object of one category from
objects of other categories

= Typically a few properties suffice

= Example:
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Characteristic Rules J ! U

JOHANNES KEPLER
UNIVERSITAT LINZ

= Allow to characterize an object of a category

“ Focus is on all properties that are representative for objects of
that category

= Example:
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Example Rules — Mushroom dataset JXYU

JOHANNES KEPLER
UNIVERSITAT LINZ

The best three rules learned with conventional heuristics

poisonous :- odor = foul.
poisonous :- gill-color = buff. £
poisonous :- odor = pungent. > &.
N )
The best three rules learned with IUA6L{eq penLi2fice &
poisonous :— vell-color = white, gill-spacing = close,
no bruises, ring-number = one,
stalk-surface-above-ring = silky.
poisonous :— vell-color = white, gill-spacing = close,
gill-size = narrow, population = several,
stalk-shape = tapering.
polisonous :—- stalk-color-below-ring = white,
ring-type = pendant, ring-number = one,
stalk-color-above-ring = white,
cap-surface = smooth, stalk-root = bulbuous,

gill-spacing = close.
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(Stecher, Janssen, Furnkranz 2016)

Example Rules — Brain Ischemia J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

[149] 0] ischemia :
[140] O] ischemia :
[137] O] ischemia :-

b.1. < 60.0001.
b.i. < 70.0001, fibrin.
b.i. < 75.0001, fibrin. >

AT

Regular heuristics find Barthel index and fibrinogen
value as relevant for a brain stroke.

Inverted heuristics in addition refer to

ag&mstollc blle pressure, and chw

[147] 0] ischemia g rrrrdyast >= 70, fibrin. »>= 2.8, b.1i. :\Eb\ﬁﬁﬁi<\\.‘
[139] 0] 4ischemia :— age >= 58, rrrrdyast >= 80, b.i. < 60.0001
[107| 0] ischemia :— rrrrdyast.. >= 80, fibrin. >= 3.5, b.1. < 65.0001, chol. >= 5.2.
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(FGrnkranz, Kliegr, Paulheim 2020)

Is Rule Length an Indicator for
Interpretability? J !U

UNIVERSITAT LINZ

Result of a crowd-sourcing experiment in 4 domains
in two out of four domains there was no correlation
In the other two longer rules were considered to be more plausible

S =

dataset units  judg  qfr [%] Kendall’s T Spearman’s p
Traffic 80 412 12 0.05 (0.226) 0.06  (0.230)
Quality 36 184 11 0.20 (0.002) 0.23  (0.002)
Movies 32 156 14 —0.01  (0.837) | —0.02  (0.828)
Mushroom 10 250 14 0.37  (0.000) 0.45 (0.000)
total 158 962 13

— no evidence that shorter rules are better understood
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(FUrnkranz, Kliegr 2018)

The Need for Interpretability Biases J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

Understandability is currently mostly defined via rule length
Occam's Razor: Shorter rules are better

On the other hand, longer rules are often more convincing

Characteristic rules, closed itemsets, formal concepts, rules learned
with inverted heuristics, ...

To define interpretability biases we need to understand human
cognitive biases

Representativeness: a rule that is more typical to what we expect is
more convincing

Semantic coherence: rules that have semantically similar conditions
are better

Recognition: rules with weII-recognized conditions are better

Structure: flat rules are not very natural
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AQ-Style Rule Induction

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

Oldest type of rule induction algorithm (Michalski 1969)
e.g., also used in Progol

Algorithm 1 AQ-type rule induction

1: function AQ(E,Fh)
2: R=10
while ¥ # () do

e

3
4: randomly select example (x,vy) € &
; r4— arg max,/ (). g ry, h(r')

(Greedily) find a subset B of
all features Fx that cover a
randomly selected example x
so that some quality function
h is optimized

< r

end while
return R
10: end function

5
6:
7 E+ FE \ B,
8
9

< 

Covering: Repeat until all
examples are covered by
one (or more) rule

33
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CN2-style rule induction

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

Most popular type of rule induction (Clark & Niblett, 1989)
used in most covering rule learning algorithms

Algorithm 2 CN2-type rule induction

1
2
3
4:
5%
6.
7
8
9

R=1
while I # () do

: function CN2(E,F h) /
1 »

— Uqr
FE+ FE \ E,

4= Arg Max,/— (B ). BCFycc M)

end while
return R
: end function

‘ 

(Greedily) find a subset B of
all features F so that some
quality function # is optimized

Covering: Repeat until all
examples are covered by
one (or more) rule

34
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Coverage Spaces J "4 U

JOHANNES KEPLER
UNIVERSITAT LINZ

good tool for visualizing properties of rule evaluation heuristics
each point is a rule covering p positive and n negative examples

universal rule:

4 | all examples

all positive and

no negative / are covered
examples (most general)
are covered .
o
§ - random rules:
iso-accuracy: § p=n _pr(id'Ct W'th_th
cover same = > :f.om 0SSEs Wi
AT G g . ixed probability
positive 2
and negative = L
examples U opposite rule:
all negative and
empty rule: no positive
no examples /V - - examples
are covered 0 N are covered

(most SpeCifiC) covered negative examples
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Learning Conjunctive Rules J A4 U

JOHANNES KEPLER
UNIVERSITAT LINZ

Most rule learning algorithms learns conjunctive rule bodies

Learning a single conjunctive rule in coverage space
in a greedy top-down (general-to-specific) search

P _
+< truel
e ‘ @
)’0'.. :::.
y
0= N

37 CAIML Seminar | TU Wien | J. Fiirnkranz



Learning DNFs via Covering J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

successive refinement of individual rules (red)

reductions in coverage space by removing covered examples
(shades )

bulding up the DNF by adding conjunctive rules (green)
P — _

0 N
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(Huynh, Firnkranz, Beck 2023)

Locally Optimal Rule Induction JX¥YU

JOHANNES KEPLER
UNIVERSITAT LINZ

Try to combine the best of AQ-style and CN2-style induction
no dependence on random example selection
efficient reduction of feature subsets
strive for the best rule for each example

Algorithm 3 locally optimal rule induction

1: function LorD(E,F h)
2: R=10 No random selection: learn

for all (x y> c F do < a rule for every example x

- /
I 4— arg mMax,/—(B_yy), BC Fy M)

R+ RU{r}

example has its best rule.

return R
- end function

3

4:

: ’ ’ ‘  No covering: Stop when every
6: end for

7.

3
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(Huynh, Furnkranz, Beck 2023)

The LORD Rule Learner J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

Key idea
aim at learning the
local optimum in a local neighborhood around the training example
the XAl idea of providing
the result is one rule for each training example
almost, because suboptimal and duplicate rules are removed

Implementation characteristics https://github.com/vgphuynh/LORD I

Make use of efficient data structures known from association rule
mining like PPC-trees and N-lists

can efficiently summarize the dataset in one pass

Use a rule learning heuristic for guiding its greedy search
e.g. the m-estimate

Inherently parallel search for locally optimal rules
LORD can efficiently tackle very large example sets
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https://github.com/vqphuynh/LORD
https://github.com/vqphuynh/LORD

LORD Evaluation JY¥YU

JOHANNES KEPLER
UNIVERSITAT LINZ

24 datasets with various sizes PP —— Class

7 Datasets # Exs. # Attr. Types Values Dlstr(ltly)éL;tlons
1 lymph 148 19 categorical no 3477‘14312‘
2 wine 178 14 numeric no 33.2; 39.9; 26.9
3 vote 435 17 categorical yes 54.8; 45.2
4 breast-cancel 699 10 numeric yves 65.5; 34.5
5] tic-tac-toe 958 10 categorical no 65.3; 34.7
6 german 1,000 21 mix no 70; 30
i car-eval 1,728 7 categorical no 22.3; 3.9; 70; 3.8
8 hypo 3,163 26 mix yes 95.2; 4.8
9 kr-vs-kp 3,196 37 categorical no 52.2; 47.8
10 waveform 5,000 22 numeric no 33.2; 32.9; 33.9
11 mushroom 8,124 23 categorical yves 51.7; 48.3
12 nursery 12,960 9 categorical no 35550;”21) kid
13 adult 48,842 14 mix ves 76; 24
14 bank 45,211 17 mix no 11.7; 88.3
15 skin 245,057 4 numeric no 20.7; 79.3
16  s-mushroom 61,069 21 mix yves 44.5; 55.5
17 connect-4 67,557 42 categorical no 65.8; 24.6; 9.6
. c. 00 O E.
18  PUC-Rio 165,632 19 mix no 29 e e
19 census 299,285 41 mix ves 93.8; 6.2
20 gas-sensor-11 919,438 11 numeric no 32.9; 29.8; 37.3
21 gas-sensor-12 919,438 12 numeric no 32.9; 29.8; 37.3
th I r t -th 5 m-”- n m | 22 cover-type 581,012 55 mix no (5)031’14(?85‘ ()}25
e largest wi illion examples i
23  pamap?2 1,942,872 33 numeric yes 2.5; 9.8; 12.3; 9;
and 19 attributes ol 1B 800
24 susy 5,000,000 19 numeric no 54.2; 45.8
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Results J ! U

JOHANNES KEPLER
UNIVERSITAT LINZ

Accuracy
better than Ripper and other modern rule learner (not ensembles)

Lord Lord Lord* Ripper Ripper PyIDS PyIDS
# Datasets (m = 0.1) (bestm) (m=0.1) (0=0) (o=2) CMAR CG "5 (k= 150)
Avg. acc. (3-6,8-9,11,13-16) 0.9416 0.9436 0.9415 0.9365 0.9374 0.916 0.9222 0.8137 0.8312
Avg. acc. (1-22) 0.9268 0.9311 0.9266 0.9073 0.9152 0.8056 // 0.7077 0.7287
Avg. ranks (1-22) 3.14 1.84 3.3 4.48 3.59 5.2 // 7.57 6.89

only few algorithms could tackle the largest datasets

Lord Lord Lord* Ripper Ripper PyIDS PyIDS
7* Datasets (m = 0.1) (bestm) (m=0.1) (0o=0) (o=2) CMAR cG (k = 50) (k = 150)
i e . aan Out of Out of : Out of Out of
23 pamap?2 6063 6044 386 memory memory 50.4 // memory memory
24 susy 52592 51218 15350 Iongfng‘;y Iongfng‘;y 97.4 Qut of - gy35 29109
Avg. runtime (1-22) 94 95.1 31.5 342 8642.8 116 // 274.7 2568.6
Avg. ranks (1-22) 3.5 3.75 1.73 2.95 5.09 4.89 // 6.27 7.82
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Results J ! U

JOHANNES KEPLER
UNIVERSITAT LINZ

Number of learned rules
enormous, e.g., 1.6 million rules for the susy dataset

Lord Lord Lord* Ripper Ripper PyIDS PyIDS
# Datasets (m = 0.1) (best m) (m = 0.1) (o = 0) (0 = 2) CMAR CG (k= 50) (k = 150)
I e o F . o r ] o ¢ Out of Out of " ] Out of Out of
23  pamap?2 16827 3.07 14137 3.00 15824 3.05 memory memory 486 2.54 // memory memory

Out of Out of Out of

24 susy 1611856 4.30 1201338 4.10 976522 4.30 memory memory 637 1.40 time 18 2.0 63 2.0
Avg. values (1-22) 8390.6 3.54 8261.4 3.5 6361.2 3.49 104.6 4.12 111.5 3.74 1945.1 3.06 // 16.8 2.06 50.4 2.1
Avg. ranks (1-22) 6.82 5.86  6.39 5.82  5.25 495 273 516 223 395 645  4.86 // 1.91 2.45 4.23 2.93

This is certainly not interpretable

However, each rule is the perfect explanation for one of the training
examples

LORD as a post-hoc XAl tool
transductive learning of rules (this is harder than you may think...)

45 CAIML Seminar | TU Wien | J. Furnkranz



Example: Parity / XOR J!U

JOHANNES KEPLER
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Consider the parity / XOR problem
n + r binary attributes sampled with an equal distribution of 0/1
n relevant binary attributes (the first » w.l.0.g.)
r irrelevant binary attributes

Target concept:
is there an even number of 1’s in the relevant attributes?

40 CAIML Seminar | TU Wien | J. Furnkranz



Encoding Parity with a Flat Rule Set

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

Most rule learning algorithms learn flat theories

n-bit parity needs 2! flat rules, no shorter encoding is possible
each rule encoding one positive case in the truth table

parity :
parity :
parity :
parity :
parity :
parity :
parity :
parity :
parity :
parity :
parity :
parity :
parity :
parity :
parity :
parity :

not
not
not
not

not
not
not
not

x1,
x1,
x1,
x1,
x1,
x1,
x1,
x1,
x1,
x1,
x1,
x1,
x1,
x1,
x1,
x1,

not
not

not

not

not

not
not

not

X2,
X2, not
x2,
x2, not
X2, not
x2,
X2,
X2, not
x2,
X2, not
X2,
x2,
x2, not
X2,
X2, not
X2, not

x3,
x3,
x3,
x3,
x3,
x3,
x3,
X2,
x3,
x3,
x3,
x3,
x3,
x3,
x3,
x2,

not
not

not

not
not

not
not
not

x4,
x4,
x4,
x4,
x4,
x4,
x4,
x4,
x4,
x4,
x4,
x4,
x4,
x4,
x4,
x4,

not
not
not
not
not
not
not
not

x5.
xb.
xb.
x5.
x5.
xb.
x5.
x5.
xb.
x5.
xb.
xb.
x5.
x5.
X5.
x5.

DNF formula with

21 literals, each
having » variables
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Network View of a Flat Rule Set J!U

JOHANNES KEPLER
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Flat Rule Sets can be converted into a network using a single
AND and a single OR layer (— a DNF expression)

Each node in the hidden layer corresponds to one rule
typically it is a local pattern, covering part of the target
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The Sucess of Deep Learning J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

Hypothesis:

Most of the success of deep learning is due to the fact that it
allows to learn deep structures in which auxiliary concepts
develop which will facilitate the learning process

Problem:
No state-of-the-art rule learning algorithm is able to learn such

structured, purely declarative rule bases
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Encoding Parity with a Structured Rule Base J¥U

JOHANNES KEPLER
UNIVERSITAT LINZ

But structured concepts are often more interpretable
in parity we need only O(n) rules with intermediate concepts

parity4b5
parity4b

parity345
parity345

parity2345 :
parity2345 :

parity
parity

not

not

not

not

x4,
x4,

x3,
x3,

x2,
X2,

x1,
x1,

not

not

not

not

x5.
x5.

parity45.
parity45b.

parity345.
parity345.

parity2345.
parity2345.
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Network View of a Structured Rule Base J ! U

JOHANNES KEPLER
UNIVERSITAT LINZ

This is encodes a deep network structure

o

This is not unlike a deep network:
each layer might contain more nodes,
which eventually are not needed

0 o
o
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Why is it good to learn deep rule sets? JXYU

JOHANNES KEPLER
UNIVERSITAT LINZ

Expressivity? It does not necessarily increase expressivity
any structured rule base can be converted into an equivalent DNF
expression, i.e., a flat set of rules

but this is also true for NNs — universal approximation theorem
(one layer is sufficient; Hornik et al. 1989)

in both cases the number of terms (size of hidden layers, conjuncts in
the DNF) is unbounded

Note that a disjunction of all examples is also a DNF expression
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Why is it good to learn deep rule sets?

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

Interpretability?

structured rule sets may be more compact

are they more interpretable?

Example: Why is x=(1,1,1,0,1,0,0,1,0,0,...) in parity?

parity : x1, x2, x3, x4, not x5.
parity : x1, x2, not x3, not x4, not xb.
parity : x1l, not x2, x3, not x4, not xb.
parity : x1, not x2, not x3, x4, not x5b.
parity :- not xl1, x2, not x3, x4, not x5.
parity :- not x1, x2, x3, not x4, not x5.
parity :- not xl1, not x2, x3, x4, not xb.
parity :- not xl1, not x2, not x2, not x4, not x5.
| parity : x1, xi, X§, not x4, X5 .
parity : x1, x2, not X§, x4, X5 .
parity : x1, not x2, x3, x4, x5.
parity :- not x1, X2, x3, x4, x5.
parity :- not xl1, not x2, not x3, x4, x5.
parity :- not xl1, not x2, x3, not x4, x5.
parity :- not x1, x2, not x3, not x4, x5.
parity : x1l, not x2, not x2, not x4, x5.

Even though the rule set
is quite complex, we only
need a single rule for
giving a good explanation.
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Why is it good to learn deep rule sets? JXYU

JOHANNES KEPLER
UNIVERSITAT LINZ

Interpretability?
structured rule sets may be more compact

are they more interpretable?
— Only if all subconcepts are easily interpretable!

Example: Why is x=(1,1,1,0,1,0,0,1,0,0,...) in parity?

! 1
| l
‘r ———————————————————————————— ,:D Even though the rule set
: I Is more compact, we need
" |‘7 to understand every
—_——— e e e ———— - subconcept in order to
| ' interpret the explanation.
T Y,

parity 1= x1l, not parity2345.

parity := not X1, parityz34o.
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(FUrnkranz et al. 2020)

Why is it good to learn structured rule bases? JNU

JOHANNES KEPLER
UNIVERSITAT LINZ

Explicit representation of all aspects of the decision function
rule sets are typically not declarative, require some sort of tie breaking
two main approaches
weighted rules / probabilistic rules

r1(0.8):aAb—x
r2(0.9) : bAc —y
r3(0.7) i cANd = sum: x (0.7+0.8 > 0.9)
d : — z

max: y (0.9)

decision lists D = (’T‘Q, Tr,T3, d)
sort the rules according to some criterion

e.g., order in which they are learned
e.g., order according to weight (effectively equivalent to using weighted max)

use the first rule that fires
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Declarative Version of Weighted Rule Sets J \ U

JOHANNES KEPLER
UNIVERSITAT LINZ

Tie Breaking with Majority vote

aNb— hi

bAc— ho

cA\Nd— hs

hl/\hg — 3
hi AN —hy — x
hs \ —ho — x
hz/\ﬁhl — Y

ho A —hs — Y

—h1 A —has A —hs — z
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Declarative Version of Decision List J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

A decision list is a decision graph, where not satisfied condition
takes you to the start of the next rule

Example of a decision list with 4 rules with 4, 2, 2, 1 conditions

Rule 2

Rule 1 Rule 3 Rule 4
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Declarative Version of Decision List

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

In our example

bAc— ho

h2—>y
—lhg/\a/\b—>h1
hi — x

—hi1 A —has AcANd— hs
h3—>ﬂf

—h1 A —ha A —hg — 2z

©

O—0
O—0

o
o

o
oo
o o

oo
é‘%
@/&
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Why is it good to learn structured rule bases? JNU

JOHANNES KEPLER
UNIVERSITAT LINZ

Learning Efficiency
the hope is that deeper structures might be easier to learn
possibly contain fewer “parameters” that need to be found
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Learning Disjunctive Rules J A4 U

JOHANNES KEPLER
UNIVERSITAT LINZ

Disjunctive rules can be learned analogously to conjunctive ones

when these are combined conjunctively, it effective learns a CNF
definition for the concept

Learning a disjunctive single rule in coverage space:

P -
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Limitations of Uni-Directional Refinements J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

— The regions in coverage space that can be reached with
successive (conjunctive or disjunctive) refinements are limited

P —————————————————————————————————————— "
| Reachable with
Unreachable Disjunctive s
Refinements  V///////, /1
4 Current
i Rule
Reachable with
Conjunctive Unreachable
Refinements
0 N
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Bi-Directional Refinements J¥YU

JOHANNES KEPLER
UNIVERSITAT LINZ

This can be overcome with by allowing successive alternations of
conjunctions and disjunctions

P e . ,

N
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Bi-Directional Refinements J¥YU

JOHANNES KEPLER
UNIVERSITAT LINZ

...which essentially corresponds to multiple alternating AND/OR

layers

0 \
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How to Learn Deep Rule Sets J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

The Neural Network Approach

fix a network structure and optimize its parameters
Binary/Ternary Neural Networks

* most of the works focus on (memory) efficiency, not on logic interpretability

. Incremental Freezing of Neural Network Weights
Differentiable Logic

* most of the works focus on first-order logic

* diff-logic is an interesting exception

Sum/Product Networks

* focus on probabilities

— We did a study in order to compare deep and shallow structure
with a simple optimization algorithm (randomized hill-climbing)
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(Beck & Furnkranz 2020)

Does a Deep Structure help? J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

To answer this empirically, we need to compare a powerful
shallow rule learner with a powerful deep rule learner

But we do not have a powerful deep rule learner... (yet)
Instead, we use a simple optimization algorithm to learn both,
deep and shallow representations

Fix a network architecture
Shallow, single layer network RNC: [20]

Deep 3-layer network DRNC(3): [32, 8, 2]
Deep 5-layer network DRNC(5): [32, 16, 8, 4, 2]
Initialize Boolean weights probabilistically

Use stochastic local search to find best weight ,flip“ on a mini-batch of
data until convergence

Optimize finally on whole training set
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Results on Artificial Datasets

(Beck & Furnkranz 2020)

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

20 artificial datasets with 10 Boolean inputs, 1 Boolean output
generated from a randomly initialized (deep) Boolean network

seed 9o(+) DRNC(5) DRNC(3) RNC RIPPER CART
@ Accuracy 0.9467 0.9502 0.9386 0.9591 0.9644
@ Rank 1.775 1.725 2.5

DRNC(3)
DRNC(5)

cD

RNC

DRNC(3) [DRNC(5)] outperforms RNC on a significance level of
more than 95% [90%)]
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(Beck & Furnkranz 2021)

Learning Curves (Artificial Datasets) JX¥YU

JOHANNES KEPLER
UNIVERSITAT LINZ

Average accuracy over number of mini-batches

0.90

0.85 +

Accuracy

0.80

0.75 +

T T T T T T
0 10 20 30 40 50
Mini-batch

DRNC(3) and DRNC(5) converge faster than RNC
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(Beck & Furnkranz 2021)

Results on Real-World (UCI) Datasets J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

dataset %0(+) DRNC(5) DRNC(3) RNC RIPPER CART
car-evaluation 0.7002 0.8999 0.9022 0.8565 0.9838 0.9821
connect-4 0.6565 0.7728 0.7712 0.7597 0.7475 0.8195
kr-vs-kp 0.5222 0.9671 0.9643 0.9725 0.9837 0.989
monk-1 0.5000 1 0.9982 0.9910 0.9478 0.8939
monk-2 0.3428 0.7321 0.7421 0.7139 0.6872 0.7869
monk-3 0.5199 0.9693 0.9603 0.9567 0.9386 0.9729
mushroom 0.784 1 0.978 0.993 0.9992 1
tic-tac-toe 0.6534 0.8956 0.9196 0.9541 1 0.9217
vote 0.6138 0.9655 0.9288 0.9264 0.9011 0.9287
@ Rank 1.556 2 2.444

DRNC(5) has the best performance on these real-world datasets,
followed by DRNC(3)
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How to Learn Deep Rule Sets J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

The Neural Network Approach
fix a network structure and optimize its parameters

The Rule Learning Approach

layerwise learning of multiple layers of conjunctive and disjunctive
rules

use conjunctions as input features for CNF learner, and vice versa
DNF learners can be used for learning CNF layers
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(Beck, Furnkranz, Huynh 2023)

Learning Mixed JV¥YU

Conjunctive and Disjunctive Rules

UNIVERSITAT LINZ

LORD: A (powerful) conventional rule learner (i.e., DNF learner)

NegLORD: Learn a CNF by inverting the problem to learn a DNF on the
negated classes and negated inputs

CORD: Allow a combination of conjunctive and disjunctive layers to
potentially learn the best of both worlds

/ LORD \ LORD
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Results J ! U

JOHANNES KEPLER
UNIVERSITAT LINZ

As known from previous works, some concepts can be better
learned in CNF, some in DNF

CORD is in most (but not all) cases better than either

0,08
0.06 coovee W BEST LORD DNF -P
—~ — m - - Best LORD CNF [ -';'f
! 3
0,04 —— = Best CORD A T

-0,08
i s - T Y R N L A \ P,
o ‘;\‘c- {ﬁ\ \\ A \Q; PR L O‘b PO o \\.n} 28 ' & 'Q.'J ,J\. \\. \\\, o b g

Wog P @ & AT T UM Cl ol . S & 4
- o SR RN A A Rl H» T
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b
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Going Deeper

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

CORD has 3 layers by default (disj./conj./disj.)

More layers could be added with the same setup

Results show modest but not consistent improvements for
carefully tuned networks

FROM — TO 2—3 2—4 2—=95 3—>4 3—5 4 —5
# IMPR. 6219 6189 6788 4407 4877 3189
# DET. 5274 5301 6057 4452 5007 3289
% IMPR. 24.75 24.63 27.01 17.54 19.41 12.69
% DET. 20.99 21.09 24.10 17.72 19.92 13.09
VALUES FOR BEST FIVE-LAYERED CORD:

# IMPR. 126 139 144 86 97 40
# DET. 48 53 52 62 56 17
% IMPR. 43.45 47.93 49.66 29.66 33.45 13.79
% DET. 16.55 18.28 17.93 21.38 19.31 5.86
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Analysis of Deeper Networks JXYU

JOHANNES KEPLER
UNIVERSITAT LINZ

positive and negative correlation of various properties in the

conjunctive and disjunctive layers of 5-layer networks with overall
accuracy

CORD DoRrc
D1 Co Ds Cy C1 Do C's Dy
m 0.154 0.020 -0.101 -0.131 | 0.081 0.175 0.019 -0.098
# Rules -0.189 -0.145 -0.092 -0.043 | -0.084 -0.253 -0.134 -0.081
# Concepts - 0.095 0.045 0.008 - 0.060 0.151 0.074
Avg. Depth - 0.111 0.057 -0.018 - 0.117 0.159 0.107
Accuracy 0.203 = 0.520 0.690 - -0.041 = 0.342 @ 0.564 -

e.g., higher values of the m-parameter (yielding more general rules)
are good in early layers, wheras lower values are better in later layers

accuracy increases in later layers
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How to Learn Deep Rule Sets J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

The Neural Network Approach
fix a network structure and optimize its parameters

The Rule Learning Approach

layerwise learning of multiple layers of conjunctive and disjunctive
rules

DNF learners can be used for learning CNF layers

Dedicated Search Algorithm

bidirectional search of multiple specializations (selecting conditions)
and generalizations (pruning conditions) for learning individual rules
did not bring much improvement in the LORD rule learner

one layer of specializations + one layer of generalizations is enough
ongoing work:
evaluate this for incremental constructions of AND/OR networks
similar to — (fuzzy) pattern trees (Hullermeier 2015)
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Conclusions J!U

JOHANNES KEPLER
UNIVERSITAT LINZ

There are some reasons to believe that deep rule networks may
outperform shallow ones (at least in some cases)

... but there is no convincing evidence yet

Challenges:
Efficient learning algorithms for training intermediate concepts
Learning bias for compact structured rule sets
Are structured rule sets more interpretable than unstructured rule sets?
What would be a killer application for deep rule sets?
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