

Expressive Graph Embeddings
via Homomorphism Counts

Pascal Welke
CAIML Seminar on 25. November 2024

3/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Learning on structured data
Hu et al (2020) Morris et al (2020) Dwivedi et al (2022)

2

2

1

2

1

1 1

1

1

1

1

1

1

1

1

3

2

21

4

1

2

1

1
1

1

1

3 1

3

1

3
1

2

21

2

2

2

2

2

1

1

1 1
1

2
1

2

1

1

2

1

1

1
1

1

1
1

2 1

1

1

1

1

1

1

1

1

2

1
1

1

1
1

1

1

1 1

1

1

1
1

1

1
1

1

2

2

2

2

1

1 1

2

1
1

1

3

2
21

2

2

2

1

4

1
2

1

1

1
1

1

2

1
1

1

2

2

1
1

3 1 31

3

1

2
21

2
2

1

1 1

1
1

2
2

2

2

2

2

2

1

1

1

2

1

2
1

1

2

1

21

1

1

22

1

1

1

1

1

1

2
2

2

1

2

2

1
1

2
2

1

1

1

1
1

2
1

1

1

2
2

1

1

2

1

1 1

112

2

1

1

1

1

1

2

2

2

1

1
1

2

1

1 1

2

2

11

2

2 1
1

11
1

1

1

2

2

1

3
2

5

1

1

1
1

1
11

2

1

2 1

2

2

2

1

2

2

2

1

2

1

6
1

2

2

11

1

2 1

2 2

1

1

2

2

2

1

1 1
1

2

2

1

1

1

1

1

2

1

2

2
1

1

1 1

2

2
1

1
1

1

1

1

1

6

3

2

3

2
3

1

2
1

1

1

2

2

2

1

2

1

2
1

2
2

1

1

2

2
1

1

2

2

1
1

1

5

1

2

1

1 1

11

1
1

1

1

2

2

2

1

6 1

2

1

2

2

1
1

3

2

3

2

3

1

2
2

1

1 1
11

1 1

5

1

1

1
1

1

2

2

1

6
1

1

1

1

1

6

1

1
1

1

1

3

23

2

3

1

32

3

2

3

1

1
1

1

1

5
71

2 1

1

1

3

1

3

1

3

2

2

2

2

1

2

1

2

1
2 1

1

1

2 2

1

1

2
1

1

1

1

1

2

1

1

1

1

1
8

1

2

2

1

1

1

1

1

1
1

1
1

11

1

1

1

1

1 1

6

6

1

2
1

2

1

2
2

2

1

2 2

2

1

2

1

1

1

2

2
1

1

2

1

1

1

2

2

1

1

2

2

1
1

1

1

1

2

2

1

1

1

1

1

2
1

2

1

2

1

11

1

1

2

1

1

1

1

1

3

2 3
1

3 2

3

1

1
1

1

1

7

5

1

5

1

6

2
2 1

5

1

1
1

5

1

1
1

2

2

2

1

1

1

11

1
1

1

1

2 1

1

1

2 2

1

1

2

2

1

1

1

1

1

1 1

5

3

2

2

1

2
2

2
1

3

1

2

1

312 2

1

1

5

1
2

2

1

1

1

1

1

3 2

1

1

2

2

1

2
1

21

1

1

8

1

8

1

8

1

2
2

2

1
2

2

2

1

3

1

2

1

2

2

1

1 3

1

2
1

2
2

1

1

1

1

2

2

1
1

1

8

1
1

1

2

2

1

1

1

8

1

1

1

1
1

6

6

1

2

1

2

1

2

2 2

1

2

2
21

2

1

2

1 2

2

11

2
1

2

1

2

2

1

1

5

1

3

2

2
2

1

1

1
1

1

5

1

3

2

22

1

1

1

11

5
1

1

1

1

1

5

1

1
1

1

1

1

1

1 1

1

1
1 1

6
6 1

2

1

2
1

22

2

1

2
2

2

1

2

1

2

1

2

2

1

1

2

1

2

1

2

2

1

1

5
1

3
2

2

2 1
1

1

1

1

5

1

3 2

2

2

1
1

1

1

1

5
1

1

1

1

1

5
1

1

1

1

1

2
2

2

2

21

1

1

2
1

1

1

2

2

2

1

2

2

2

1

8

1

21

22

1

1

8

1

2

1

2
2

1

1

2

2

1
1

1

1

1

2

2

1

1

1

1

1

81

8

1

3/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Learning on structured data
Hu et al (2020) Morris et al (2020) Dwivedi et al (2022)

2

2

1

2

1

1 1

1

1

1

1

1

1

1

1

3

2

21

4

1

2

1

1
1

1

1

3 1

3

1

3
1

2

21

2

2

2

2

2

1

1

1 1
1

2
1

2

1

1

2

1

1

1
1

1

1
1

2 1

1

1

1

1

1

1

1

1

2

1
1

1

1
1

1

1

1 1

1

1

1
1

1

1
1

1

2

2

2

2

1

1 1

2

1
1

1

3

2
21

2

2

2

1

4

1
2

1

1

1
1

1

2

1
1

1

2

2

1
1

3 1 31

3

1

2
21

2
2

1

1 1

1
1

2
2

2

2

2

2

2

1

1

1

2

1

2
1

1

2

1

21

1

1

22

1

1

1

1

1

1

2
2

2

1

2

2

1
1

2
2

1

1

1

1
1

2
1

1

1

2
2

1

1

2

1

1 1

112

2

1

1

1

1

1

2

2

2

1

1
1

2

1

1 1

2

2

11

2

2 1
1

11
1

1

1

2

2

1

3
2

5

1

1

1
1

1
11

2

1

2 1

2

2

2

1

2

2

2

1

2

1

6
1

2

2

11

1

2 1

2 2

1

1

2

2

2

1

1 1
1

2

2

1

1

1

1

1

2

1

2

2
1

1

1 1

2

2
1

1
1

1

1

1

1

6

3

2

3

2
3

1

2
1

1

1

2

2

2

1

2

1

2
1

2
2

1

1

2

2
1

1

2

2

1
1

1

5

1

2

1

1 1

11

1
1

1

1

2

2

2

1

6 1

2

1

2

2

1
1

3

2

3

2

3

1

2
2

1

1 1
11

1 1

5

1

1

1
1

1

2

2

1

6
1

1

1

1

1

6

1

1
1

1

1

3

23

2

3

1

32

3

2

3

1

1
1

1

1

5
71

2 1

1

1

3

1

3

1

3

2

2

2

2

1

2

1

2

1
2 1

1

1

2 2

1

1

2
1

1

1

1

1

2

1

1

1

1

1
8

1

2

2

1

1

1

1

1

1
1

1
1

11

1

1

1

1

1 1

6

6

1

2
1

2

1

2
2

2

1

2 2

2

1

2

1

1

1

2

2
1

1

2

1

1

1

2

2

1

1

2

2

1
1

1

1

1

2

2

1

1

1

1

1

2
1

2

1

2

1

11

1

1

2

1

1

1

1

1

3

2 3
1

3 2

3

1

1
1

1

1

7

5

1

5

1

6

2
2 1

5

1

1
1

5

1

1
1

2

2

2

1

1

1

11

1
1

1

1

2 1

1

1

2 2

1

1

2

2

1

1

1

1

1

1 1

5

3

2

2

1

2
2

2
1

3

1

2

1

312 2

1

1

5

1
2

2

1

1

1

1

1

3 2

1

1

2

2

1

2
1

21

1

1

8

1

8

1

8

1

2
2

2

1
2

2

2

1

3

1

2

1

2

2

1

1 3

1

2
1

2
2

1

1

1

1

2

2

1
1

1

8

1
1

1

2

2

1

1

1

8

1

1

1

1
1

6

6

1

2

1

2

1

2

2 2

1

2

2
21

2

1

2

1 2

2

11

2
1

2

1

2

2

1

1

5

1

3

2

2
2

1

1

1
1

1

5

1

3

2

22

1

1

1

11

5
1

1

1

1

1

5

1

1
1

1

1

1

1

1 1

1

1
1 1

6
6 1

2

1

2
1

22

2

1

2
2

2

1

2

1

2

1

2

2

1

1

2

1

2

1

2

2

1

1

5
1

3
2

2

2 1
1

1

1

1

5

1

3 2

2

2

1
1

1

1

1

5
1

1

1

1

1

5
1

1

1

1

1

2
2

2

2

21

1

1

2
1

1

1

2

2

2

1

2

2

2

1

8

1

21

22

1

1

8

1

2

1

2
2

1

1

2

2

1
1

1

1

1

2

2

1

1

1

1

1

81

8

1

3/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Learning on structured data
Hu et al (2020) Morris et al (2020) Dwivedi et al (2022)

2

2

1

2

1

1 1

1

1

1

1

1

1

1

1

3

2

21

4

1

2

1

1
1

1

1

3 1

3

1

3
1

2

21

2

2

2

2

2

1

1

1 1
1

2
1

2

1

1

2

1

1

1
1

1

1
1

2 1

1

1

1

1

1

1

1

1

2

1
1

1

1
1

1

1

1 1

1

1

1
1

1

1
1

1

2

2

2

2

1

1 1

2

1
1

1

3

2
21

2

2

2

1

4

1
2

1

1

1
1

1

2

1
1

1

2

2

1
1

3 1 31

3

1

2
21

2
2

1

1 1

1
1

2
2

2

2

2

2

2

1

1

1

2

1

2
1

1

2

1

21

1

1

22

1

1

1

1

1

1

2
2

2

1

2

2

1
1

2
2

1

1

1

1
1

2
1

1

1

2
2

1

1

2

1

1 1

112

2

1

1

1

1

1

2

2

2

1

1
1

2

1

1 1

2

2

11

2

2 1
1

11
1

1

1

2

2

1

3
2

5

1

1

1
1

1
11

2

1

2 1

2

2

2

1

2

2

2

1

2

1

6
1

2

2

11

1

2 1

2 2

1

1

2

2

2

1

1 1
1

2

2

1

1

1

1

1

2

1

2

2
1

1

1 1

2

2
1

1
1

1

1

1

1

6

3

2

3

2
3

1

2
1

1

1

2

2

2

1

2

1

2
1

2
2

1

1

2

2
1

1

2

2

1
1

1

5

1

2

1

1 1

11

1
1

1

1

2

2

2

1

6 1

2

1

2

2

1
1

3

2

3

2

3

1

2
2

1

1 1
11

1 1

5

1

1

1
1

1

2

2

1

6
1

1

1

1

1

6

1

1
1

1

1

3

23

2

3

1

32

3

2

3

1

1
1

1

1

5
71

2 1

1

1

3

1

3

1

3

2

2

2

2

1

2

1

2

1
2 1

1

1

2 2

1

1

2
1

1

1

1

1

2

1

1

1

1

1
8

1

2

2

1

1

1

1

1

1
1

1
1

11

1

1

1

1

1 1

6

6

1

2
1

2

1

2
2

2

1

2 2

2

1

2

1

1

1

2

2
1

1

2

1

1

1

2

2

1

1

2

2

1
1

1

1

1

2

2

1

1

1

1

1

2
1

2

1

2

1

11

1

1

2

1

1

1

1

1

3

2 3
1

3 2

3

1

1
1

1

1

7

5

1

5

1

6

2
2 1

5

1

1
1

5

1

1
1

2

2

2

1

1

1

11

1
1

1

1

2 1

1

1

2 2

1

1

2

2

1

1

1

1

1

1 1

5

3

2

2

1

2
2

2
1

3

1

2

1

312 2

1

1

5

1
2

2

1

1

1

1

1

3 2

1

1

2

2

1

2
1

21

1

1

8

1

8

1

8

1

2
2

2

1
2

2

2

1

3

1

2

1

2

2

1

1 3

1

2
1

2
2

1

1

1

1

2

2

1
1

1

8

1
1

1

2

2

1

1

1

8

1

1

1

1
1

6

6

1

2

1

2

1

2

2 2

1

2

2
21

2

1

2

1 2

2

11

2
1

2

1

2

2

1

1

5

1

3

2

2
2

1

1

1
1

1

5

1

3

2

22

1

1

1

11

5
1

1

1

1

1

5

1

1
1

1

1

1

1

1 1

1

1
1 1

6
6 1

2

1

2
1

22

2

1

2
2

2

1

2

1

2

1

2

2

1

1

2

1

2

1

2

2

1

1

5
1

3
2

2

2 1
1

1

1

1

5

1

3 2

2

2

1
1

1

1

1

5
1

1

1

1

1

5
1

1

1

1

1

2
2

2

2

21

1

1

2
1

1

1

2

2

2

1

2

2

2

1

8

1

21

22

1

1

8

1

2

1

2
2

1

1

2

2

1
1

1

1

1

2

2

1

1

1

1

1

81

8

1

3/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Learning on structured data
Hu et al (2020) Morris et al (2020) Dwivedi et al (2022)

2

2

1

2

1

1 1

1

1

1

1

1

1

1

1

3

2

21

4

1

2

1

1
1

1

1

3 1

3

1

3
1

2

21

2

2

2

2

2

1

1

1 1
1

2
1

2

1

1

2

1

1

1
1

1

1
1

2 1

1

1

1

1

1

1

1

1

2

1
1

1

1
1

1

1

1 1

1

1

1
1

1

1
1

1

2

2

2

2

1

1 1

2

1
1

1

3

2
21

2

2

2

1

4

1
2

1

1

1
1

1

2

1
1

1

2

2

1
1

3 1 31

3

1

2
21

2
2

1

1 1

1
1

2
2

2

2

2

2

2

1

1

1

2

1

2
1

1

2

1

21

1

1

22

1

1

1

1

1

1

2
2

2

1

2

2

1
1

2
2

1

1

1

1
1

2
1

1

1

2
2

1

1

2

1

1 1

112

2

1

1

1

1

1

2

2

2

1

1
1

2

1

1 1

2

2

11

2

2 1
1

11
1

1

1

2

2

1

3
2

5

1

1

1
1

1
11

2

1

2 1

2

2

2

1

2

2

2

1

2

1

6
1

2

2

11

1

2 1

2 2

1

1

2

2

2

1

1 1
1

2

2

1

1

1

1

1

2

1

2

2
1

1

1 1

2

2
1

1
1

1

1

1

1

6

3

2

3

2
3

1

2
1

1

1

2

2

2

1

2

1

2
1

2
2

1

1

2

2
1

1

2

2

1
1

1

5

1

2

1

1 1

11

1
1

1

1

2

2

2

1

6 1

2

1

2

2

1
1

3

2

3

2

3

1

2
2

1

1 1
11

1 1

5

1

1

1
1

1

2

2

1

6
1

1

1

1

1

6

1

1
1

1

1

3

23

2

3

1

32

3

2

3

1

1
1

1

1

5
71

2 1

1

1

3

1

3

1

3

2

2

2

2

1

2

1

2

1
2 1

1

1

2 2

1

1

2
1

1

1

1

1

2

1

1

1

1

1
8

1

2

2

1

1

1

1

1

1
1

1
1

11

1

1

1

1

1 1

6

6

1

2
1

2

1

2
2

2

1

2 2

2

1

2

1

1

1

2

2
1

1

2

1

1

1

2

2

1

1

2

2

1
1

1

1

1

2

2

1

1

1

1

1

2
1

2

1

2

1

11

1

1

2

1

1

1

1

1

3

2 3
1

3 2

3

1

1
1

1

1

7

5

1

5

1

6

2
2 1

5

1

1
1

5

1

1
1

2

2

2

1

1

1

11

1
1

1

1

2 1

1

1

2 2

1

1

2

2

1

1

1

1

1

1 1

5

3

2

2

1

2
2

2
1

3

1

2

1

312 2

1

1

5

1
2

2

1

1

1

1

1

3 2

1

1

2

2

1

2
1

21

1

1

8

1

8

1

8

1

2
2

2

1
2

2

2

1

3

1

2

1

2

2

1

1 3

1

2
1

2
2

1

1

1

1

2

2

1
1

1

8

1
1

1

2

2

1

1

1

8

1

1

1

1
1

6

6

1

2

1

2

1

2

2 2

1

2

2
21

2

1

2

1 2

2

11

2
1

2

1

2

2

1

1

5

1

3

2

2
2

1

1

1
1

1

5

1

3

2

22

1

1

1

11

5
1

1

1

1

1

5

1

1
1

1

1

1

1

1 1

1

1
1 1

6
6 1

2

1

2
1

22

2

1

2
2

2

1

2

1

2

1

2

2

1

1

2

1

2

1

2

2

1

1

5
1

3
2

2

2 1
1

1

1

1

5

1

3 2

2

2

1
1

1

1

1

5
1

1

1

1

1

5
1

1

1

1

1

2
2

2

2

21

1

1

2
1

1

1

2

2

2

1

2

2

2

1

8

1

21

22

1

1

8

1

2

1

2
2

1

1

2

2

1
1

1

1

1

2

2

1

1

1

1

1

81

8

1

?

4/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Learning on structured data

ch
em

is
tr

y
pr

of
.

?

4/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Learning on structured data m
e

5/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Problems in graph learning

Neural methods achieve
remarkable results in graph
learning

– molecule synthesis and prediction
– modeling of human social

behavior
– ...

but come with

– significant resource demands
– too much complexity to be

interpretable
– which hinders application in many

scenarios

5/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Problems in graph learning

Neural methods achieve
remarkable results in graph
learning

– molecule synthesis and prediction
– modeling of human social

behavior
– ...

but come with

– significant resource demands
– too much complexity to be

interpretable
– which hinders application in many

scenarios

5/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Problems in graph learning

Neural methods achieve
remarkable results in graph
learning

– molecule synthesis and prediction
– modeling of human social

behavior
– ...

but come with

– significant resource demands
– too much complexity to be

interpretable
– which hinders application in many

scenarios

5/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Problems in graph learning

Neural methods achieve
remarkable results in graph
learning

– molecule synthesis and prediction
– modeling of human social

behavior
– ...

but come with
– significant resource demands
– too much complexity to be

interpretable
– which hinders application in many

scenarios

Graph Representation Learning

7/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

The goal

Vectorial graph representations
that

– yield semantically and structurally
meaningful distances

– are interpretable
– are adaptable to given data

7/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

The goal

Vectorial graph representations
that

– yield semantically and structurally
meaningful distances

– are interpretable
– are adaptable to given data

8/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Graph representation learning

Graph
Structured

Data

Vectorial
Representation

Solve Your
Learning Task

8/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Graph representation learning

Graph
Structured

Data

Vectorial
Representation

Solve Your
Learning Task

“Latent Space”

Additional Layers
+ Loss Function

Graph Neural
Nets (GNNs)

Deep Learning

“Latent Space”

Additional Layers
+ Loss Function

Graph Neural
Nets (GNNs)

Deep Learning

8/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Graph representation learning

Graph
Structured

Data

Vectorial
Representation

Solve Your
Learning Task

“Latent Space”

Additional Layers
+ Loss Function

Graph Neural
Nets (GNNs)

Deep Learning

“Latent Space”

Additional Layers
+ Loss Function

Graph Neural
Nets (GNNs)

Deep Learning

Feature
Representation

Your ML Method
of Choice

Selection/Mining
of Feature Space

Graph Mining

Feature
Representation

Your ML Method
of Choice

Selection/Mining
of Feature Space

Graph Mining

8/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Graph representation learning

Graph
Structured

Data

Vectorial
Representation

Solve Your
Learning Task

“Latent Space”

Additional Layers
+ Loss Function

Graph Neural
Nets (GNNs)

Deep Learning

“Latent Space”

Additional Layers
+ Loss Function

Graph Neural
Nets (GNNs)

Deep Learning

Feature
Representation

Your ML Method
of Choice

Selection/Mining
of Feature Space

Graph Mining

Feature
Representation

Your ML Method
of Choice

Selection/Mining
of Feature Space

Graph Mining

Implicit Feature
Representation

Your Kernel
Method of Choice

Design of a
Kernel Function

Kernel Methods

Implicit Feature
Representation

Your Kernel
Method of Choice

Design of a
Kernel Function

Kernel Methods

9/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

The problem with vectorial graph representations

We want our graph representation function ϕ to be

• permutation-invariant
for all isomorphic graphs

G ≃ H : ϕ(G) = ϕ(H)

• complete
for all non-isomorphic graphs

G ̸≃ H : ϕ(G) ̸= ϕ(H)

G Rd

9/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

The problem with vectorial graph representations

We want our graph representation function ϕ to be
• permutation-invariant

for all isomorphic graphs

G ≃ H : ϕ(G) = ϕ(H)

• complete
for all non-isomorphic graphs

G ̸≃ H : ϕ(G) ̸= ϕ(H)

G Rd

9/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

The problem with vectorial graph representations

We want our graph representation function ϕ to be
• permutation-invariant

for all isomorphic graphs

G ≃ H : ϕ(G) = ϕ(H)

• complete
for all non-isomorphic graphs

G ̸≃ H : ϕ(G) ̸= ϕ(H)

G Rd

10/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Why do we care?

Graph
Structured

Data

Vectorial
Representation

Solve Your
Learning Task

• Unfortunately computing any
permutation invariant and
complete embedding (or kernel)
is as hard as deciding graph
isomorphism
• Typical solution: drop

completeness for efficiency
– most practical graph kernels,

GNNs, Weisfeiler Leman test, . . .

10/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Why do we care?

Graph
Structured

Data

Vectorial
Representation

Solve Your
Learning Task

• Unfortunately computing any
permutation invariant and
complete embedding (or kernel)
is as hard as deciding graph
isomorphism
• Typical solution: drop

completeness for efficiency
– most practical graph kernels,

GNNs, Weisfeiler Leman test, . . .

10/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Why do we care?

Graph
Structured

Data

Vectorial
Representation

Solve Your
Learning Task

• Unfortunately computing any
permutation invariant and
complete embedding (or kernel)
is as hard as deciding graph
isomorphism
• Typical solution: drop

completeness for efficiency
– most practical graph kernels,

GNNs, Weisfeiler Leman test, . . .

10/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Why do we care?

Graph
Structured

Data

Vectorial
Representation

Solve Your
Learning Task

We cannot get
back what we
lose here

• Unfortunately computing any
permutation invariant and
complete embedding (or kernel)
is as hard as deciding graph
isomorphism
• Typical solution: drop

completeness for efficiency
– most practical graph kernels,

GNNs, Weisfeiler Leman test, . . .

10/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Why do we care?

Graph
Structured

Data

Vectorial
Representation

Solve Your
Learning Task

We cannot get
back what we
lose here

• Unfortunately computing any
permutation invariant and
complete embedding (or kernel)
is as hard as deciding graph
isomorphism

• Typical solution: drop
completeness for efficiency

– most practical graph kernels,
GNNs, Weisfeiler Leman test, . . .

10/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Why do we care?

Graph
Structured

Data

Vectorial
Representation

Solve Your
Learning Task

We cannot get
back what we
lose here

• Unfortunately computing any
permutation invariant and
complete embedding (or kernel)
is as hard as deciding graph
isomorphism
• Typical solution: drop

completeness for efficiency
– most practical graph kernels,

GNNs, Weisfeiler Leman test, . . .

Message Passing and the Weisfeiler Leman Algorithm

12/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Message Passing
• Let’s assume that we have some feature

representation r0 : V(G)→ Rd for the vertices
in our graph

• It is reasonable that in many situations
neighboring vertices influence each other
• Consider a social network where users spread

their content along connections to their
affiliates
• In turn, neighbors might be influenced by that

and hence spread (a variant of) that
information (aka. “retweet”)
• Message passing models this kind of behavior

as a simultaneous round based process

12/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Message Passing
• Let’s assume that we have some feature

representation r0 : V(G)→ Rd for the vertices
in our graph
• It is reasonable that in many situations

neighboring vertices influence each other

• Consider a social network where users spread
their content along connections to their
affiliates
• In turn, neighbors might be influenced by that

and hence spread (a variant of) that
information (aka. “retweet”)
• Message passing models this kind of behavior

as a simultaneous round based process

12/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Message Passing
• Let’s assume that we have some feature

representation r0 : V(G)→ Rd for the vertices
in our graph
• It is reasonable that in many situations

neighboring vertices influence each other
• Consider a social network where users spread

their content along connections to their
affiliates

• In turn, neighbors might be influenced by that
and hence spread (a variant of) that
information (aka. “retweet”)
• Message passing models this kind of behavior

as a simultaneous round based process

12/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Message Passing
• Let’s assume that we have some feature

representation r0 : V(G)→ Rd for the vertices
in our graph
• It is reasonable that in many situations

neighboring vertices influence each other
• Consider a social network where users spread

their content along connections to their
affiliates
• In turn, neighbors might be influenced by that

and hence spread (a variant of) that
information (aka. “retweet”)

• Message passing models this kind of behavior
as a simultaneous round based process

12/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Message Passing
• Let’s assume that we have some feature

representation r0 : V(G)→ Rd for the vertices
in our graph
• It is reasonable that in many situations

neighboring vertices influence each other
• Consider a social network where users spread

their content along connections to their
affiliates
• In turn, neighbors might be influenced by that

and hence spread (a variant of) that
information (aka. “retweet”)
• Message passing models this kind of behavior

as a simultaneous round based process

13/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

The message passing framework

rk+1(v) = updk (rk(v), aggk ({{rk(w) | w ∈ N (v)}}))
where

• v ∈ V(G) is a vertex
• k ≥ 0
• rk+1 : V(G)→ Xk+1 for all k ≥ 0
• r0 : V(G)→ X0 is assumed to be

given
• {{rk(w) | w ∈ N (v)}} is the

multiset of (old) representations
of the neighbors of v ∈ V(G)

• aggk : NXk → X ′k aggregates a
set of (old) representations to
some value
• updk : Xk ×X ′k → Xk+1 updates

the representation of v given its
old representation and the
aggregate of the neighbors

13/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

The message passing framework

rk+1(v) = updk (rk(v), aggk ({{rk(w) | w ∈ N (v)}}))
where
• v ∈ V(G) is a vertex

• k ≥ 0
• rk+1 : V(G)→ Xk+1 for all k ≥ 0
• r0 : V(G)→ X0 is assumed to be

given
• {{rk(w) | w ∈ N (v)}} is the

multiset of (old) representations
of the neighbors of v ∈ V(G)

• aggk : NXk → X ′k aggregates a
set of (old) representations to
some value
• updk : Xk ×X ′k → Xk+1 updates

the representation of v given its
old representation and the
aggregate of the neighbors

13/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

The message passing framework

rk+1(v) = updk (rk(v), aggk ({{rk(w) | w ∈ N (v)}}))
where
• v ∈ V(G) is a vertex
• k ≥ 0

• rk+1 : V(G)→ Xk+1 for all k ≥ 0
• r0 : V(G)→ X0 is assumed to be

given
• {{rk(w) | w ∈ N (v)}} is the

multiset of (old) representations
of the neighbors of v ∈ V(G)

• aggk : NXk → X ′k aggregates a
set of (old) representations to
some value
• updk : Xk ×X ′k → Xk+1 updates

the representation of v given its
old representation and the
aggregate of the neighbors

13/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

The message passing framework

rk+1(v) = updk (rk(v), aggk ({{rk(w) | w ∈ N (v)}}))
where
• v ∈ V(G) is a vertex
• k ≥ 0
• rk+1 : V(G)→ Xk+1 for all k ≥ 0

• r0 : V(G)→ X0 is assumed to be
given
• {{rk(w) | w ∈ N (v)}} is the

multiset of (old) representations
of the neighbors of v ∈ V(G)

• aggk : NXk → X ′k aggregates a
set of (old) representations to
some value
• updk : Xk ×X ′k → Xk+1 updates

the representation of v given its
old representation and the
aggregate of the neighbors

13/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

The message passing framework

rk+1(v) = updk (rk(v), aggk ({{rk(w) | w ∈ N (v)}}))
where
• v ∈ V(G) is a vertex
• k ≥ 0
• rk+1 : V(G)→ Xk+1 for all k ≥ 0
• r0 : V(G)→ X0 is assumed to be

given

• {{rk(w) | w ∈ N (v)}} is the
multiset of (old) representations
of the neighbors of v ∈ V(G)

• aggk : NXk → X ′k aggregates a
set of (old) representations to
some value
• updk : Xk ×X ′k → Xk+1 updates

the representation of v given its
old representation and the
aggregate of the neighbors

13/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

The message passing framework

rk+1(v) = updk (rk(v), aggk ({{rk(w) | w ∈ N (v)}}))
where
• v ∈ V(G) is a vertex
• k ≥ 0
• rk+1 : V(G)→ Xk+1 for all k ≥ 0
• r0 : V(G)→ X0 is assumed to be

given
• {{rk(w) | w ∈ N (v)}} is the

multiset of (old) representations
of the neighbors of v ∈ V(G)

• aggk : NXk → X ′k aggregates a
set of (old) representations to
some value
• updk : Xk ×X ′k → Xk+1 updates

the representation of v given its
old representation and the
aggregate of the neighbors

13/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

The message passing framework

rk+1(v) = updk (rk(v), aggk ({{rk(w) | w ∈ N (v)}}))
where
• v ∈ V(G) is a vertex
• k ≥ 0
• rk+1 : V(G)→ Xk+1 for all k ≥ 0
• r0 : V(G)→ X0 is assumed to be

given
• {{rk(w) | w ∈ N (v)}} is the

multiset of (old) representations
of the neighbors of v ∈ V(G)

• aggk : NXk → X ′k aggregates a
set of (old) representations to
some value

• updk : Xk ×X ′k → Xk+1 updates
the representation of v given its
old representation and the
aggregate of the neighbors

13/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

The message passing framework

rk+1(v) = updk (rk(v), aggk ({{rk(w) | w ∈ N (v)}}))
where
• v ∈ V(G) is a vertex
• k ≥ 0
• rk+1 : V(G)→ Xk+1 for all k ≥ 0
• r0 : V(G)→ X0 is assumed to be

given
• {{rk(w) | w ∈ N (v)}} is the

multiset of (old) representations
of the neighbors of v ∈ V(G)

• aggk : NXk → X ′k aggregates a
set of (old) representations to
some value
• updk : Xk ×X ′k → Xk+1 updates

the representation of v given its
old representation and the
aggregate of the neighbors

13/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

The message passing framework

rk+1(v) = updk (rk(v), aggk ({{rk(w) | w ∈ N (v)}}))
where
• v ∈ V(G) is a vertex
• k ≥ 0
• rk+1 : V(G)→ Xk+1 for all k ≥ 0
• r0 : V(G)→ X0 is assumed to be

given
• {{rk(w) | w ∈ N (v)}} is the

multiset of (old) representations
of the neighbors of v ∈ V(G)

• aggk : NXk → X ′k aggregates a
set of (old) representations to
some value
• updk : Xk ×X ′k → Xk+1 updates

the representation of v given its
old representation and the
aggregate of the neighbors

We will omit k in the notation of updk and aggk when upd0 = upd1 = . . .

14/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Weisfeiler Leman (1)

rWLk+1(v) = #k

(
rWLk (v),

{{
rWLk (w) | w ∈ N (v)

}})

• rWL0 : V(G)→ X0 maps to a discrete space
• #k : Xk ×NXk → Xk+1 is a perfect hash function

14/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Weisfeiler Leman (1)

rWLk+1(v) = #k

(
rWLk (v),

{{
rWLk (w) | w ∈ N (v)

}})
Where

• rWL0 : V(G)→ X0 maps to a discrete space
• #k : Xk ×NXk → Xk+1 is a perfect hash function

14/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Weisfeiler Leman (1)

rWLk+1(v) = #k

(
rWLk (v),

{{
rWLk (w) | w ∈ N (v)

}})
Where

• rWL0 : V(G)→ X0 maps to a discrete space

• #k : Xk ×NXk → Xk+1 is a perfect hash function

14/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Weisfeiler Leman (1)

rWLk+1(v) = #k

(
rWLk (v),

{{
rWLk (w) | w ∈ N (v)

}})
Where

• rWL0 : V(G)→ X0 maps to a discrete space
• #k : Xk ×NXk → Xk+1 is a perfect hash function

15/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Weisfeiler Leman (2)

rWLk+1(v) = #k

(
rWLk (v),

{{
rWLk (w) | w ∈ N (v)

}})

15/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Weisfeiler Leman (2)

rWLk+1(v) = #k

(
rWLk (v),

{{
rWLk (w) | w ∈ N (v)

}})
Let’s think of the hash values as colors of vertices

15/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Weisfeiler Leman (2)

rWLk+1(v) = #k

(
rWLk (v),

{{
rWLk (w) | w ∈ N (v)

}})
Let’s think of the hash values as colors of vertices

15/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Weisfeiler Leman (2)

rWLk+1(v) = #k

(
rWLk (v),

{{
rWLk (w) | w ∈ N (v)

}})
Let’s think of the hash values as colors of vertices

15/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Weisfeiler Leman (2)

rWLk+1(v) = #k

(
rWLk (v),

{{
rWLk (w) | w ∈ N (v)

}})
Let’s think of the hash values as colors of vertices

16/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Message passing graph neural networks (1)

rMPNNk+1 (v) = MLPUPD
k

(
rMPNNk (v), MLPk

(
∑

w∈N(v)
rMPNNk (w)

))

• rMPNN0 : V(G)→ Rd

• MLPAGG
k : Rd → Rd is a multilayer perceptron

• MLPUPD
k : Rd ×Rd → Rd is a multilayer perceptron

16/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Message passing graph neural networks (1)

rMPNNk+1 (v) = MLPUPD
k

(
rMPNNk (v), MLPk

(
∑

w∈N(v)
rMPNNk (w)

))
Where

• rMPNN0 : V(G)→ Rd

• MLPAGG
k : Rd → Rd is a multilayer perceptron

• MLPUPD
k : Rd ×Rd → Rd is a multilayer perceptron

16/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Message passing graph neural networks (1)

rMPNNk+1 (v) = MLPUPD
k

(
rMPNNk (v), MLPk

(
∑

w∈N(v)
rMPNNk (w)

))
Where

• rMPNN0 : V(G)→ Rd

• MLPAGG
k : Rd → Rd is a multilayer perceptron

• MLPUPD
k : Rd ×Rd → Rd is a multilayer perceptron

16/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Message passing graph neural networks (1)

rMPNNk+1 (v) = MLPUPD
k

(
rMPNNk (v), MLPk

(
∑

w∈N(v)
rMPNNk (w)

))
Where

• rMPNN0 : V(G)→ Rd

• MLPAGG
k : Rd → Rd is a multilayer perceptron

• MLPUPD
k : Rd ×Rd → Rd is a multilayer perceptron

16/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Message passing graph neural networks (1)

rMPNNk+1 (v) = MLPUPD
k

(
rMPNNk (v), MLPk

(
∑

w∈N(v)
rMPNNk (w)

))
Where

• rMPNN0 : V(G)→ Rd

• MLPAGG
k : Rd → Rd is a multilayer perceptron

• MLPUPD
k : Rd ×Rd → Rd is a multilayer perceptron

17/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Message passing graph neural networks (2)

G

1 2 3 L

⊕
MLP

· · ·

• MPNN layers are stacked on top of each other

• Graph level tasks are solved by summing together all node representations,
then a final MLP
• Training can be done with gradient descent

17/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Message passing graph neural networks (2)

G

1 2 3 L

⊕
MLP

· · ·

• MPNN layers are stacked on top of each other
• Graph level tasks are solved by summing together all node representations,

then a final MLP

• Training can be done with gradient descent

17/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Message passing graph neural networks (2)

G

1 2 3 L

⊕
MLP

· · ·

• MPNN layers are stacked on top of each other
• Graph level tasks are solved by summing together all node representations,

then a final MLP
• Training can be done with gradient descent

Message Passing and the Weisfeiler Leman Algorithm |
Issues

19/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Isomorphic Graphs have Identical WL Label Histograms

19/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Isomorphic Graphs have Identical WL Label Histograms

19/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Isomorphic Graphs have Identical WL Label Histograms

20/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Nonisomorphic Graphs Can Have Identical Label Histograms

20/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Nonisomorphic Graphs Can Have Identical Label Histograms

20/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Nonisomorphic Graphs Can Have Identical Label Histograms

21/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

The connection between WL and MPNNs

rWL
k (G) = rWL

k (H) =⇒ rMPNN
k (G) = rMPNN

k (H)

• Whenever WL cannot distinguish two graphs, any MPNN cannot compute
different representations
• MPNNs are incomplete
• Their incompleteness can be bounded by the incompleteness of the WL

algorithm

21/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

The connection between WL and MPNNs

rWL
k (G) = rWL

k (H) =⇒ rMPNN
k (G) = rMPNN

k (H)

• Whenever WL cannot distinguish two graphs, any MPNN cannot compute
different representations

• MPNNs are incomplete
• Their incompleteness can be bounded by the incompleteness of the WL

algorithm

21/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

The connection between WL and MPNNs

rWL
k (G) = rWL

k (H) =⇒ rMPNN
k (G) = rMPNN

k (H)

• Whenever WL cannot distinguish two graphs, any MPNN cannot compute
different representations
• MPNNs are incomplete

• Their incompleteness can be bounded by the incompleteness of the WL
algorithm

21/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

The connection between WL and MPNNs

rWL
k (G) = rWL

k (H) =⇒ rMPNN
k (G) = rMPNN

k (H)

• Whenever WL cannot distinguish two graphs, any MPNN cannot compute
different representations
• MPNNs are incomplete
• Their incompleteness can be bounded by the incompleteness of the WL

algorithm

Homomorphism Counts as Graph Representations

23/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Homomorphism

A homomorphism from H to G is a
function

h : V(H)→ V(G)

such that

(v,w) ∈ E(H) =⇒ (h(v),h(w)) ∈ V(G)

24/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Counting Homomorphisms

Given H and G, we can ask how many
homomorphisms exist from H to G?

24/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Counting Homomorphisms

Given H and G, we can ask how many
homomorphisms exist from H to G?

There are twelve homomorphisms
from H to G!

25/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

An intractable complete graph embedding

20
60
260
60

...
...

340
...

...
120

...
...

G

φn(G)

Theorem [Lovász 1967].
Two graphs G and H are
isomorphic iff
φn(G) = φn(H)

25/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

An intractable complete graph embedding

20
60
260
60

...
...

340
...

...
120

...
...

G

φn(G)

Theorem [Lovász 1967].
Two graphs G and H are
isomorphic iff
φn(G) = φn(H)

25/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

An intractable complete graph embedding

20
60
260
60

...
...

340
...

...
120

...
...

G

φn(G)

Theorem [Lovász 1967].
Two graphs G and H are
isomorphic iff
φn(G) = φn(H)

26/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

We can count homomorphisms (for some graphs) in practice!

• Homomorphism counting is fixed parameter tractable

• The parameter is called tree-width
• If the pattern H has tree-width k, the homomorphisms from H to any G can

be counted in O(|V(G)|k)

26/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

We can count homomorphisms (for some graphs) in practice!

• Homomorphism counting is fixed parameter tractable
• The parameter is called tree-width

• If the pattern H has tree-width k, the homomorphisms from H to any G can
be counted in O(|V(G)|k)

26/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

We can count homomorphisms (for some graphs) in practice!

• Homomorphism counting is fixed parameter tractable
• The parameter is called tree-width
• If the pattern H has tree-width k, the homomorphisms from H to any G can

be counted in O(|V(G)|k)

27/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

An intractable complete graph embedding

20
60

←

260
60

←

...
...

340

←

...
...
120

←

...
...

0
60
0
60

... 0
340

... 0
120

... 0

G

φn(G)

φF (G)

27/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

An intractable complete graph embedding

20
60 ←
260
60 ←

...
...

340 ←
...

...
120 ←

...
...

0
60
0
60

... 0
340

... 0
120

... 0

G

φn(G)

φF (G)

27/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

An intractable complete graph embedding

20
60 ←
260
60 ←

...
...

340 ←
...

...
120 ←

...
...

0
60
0
60

... 0
340

... 0
120

... 0

G

φn(G) φF (G)

28/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

How to select the patterns?

• Some patterns are more expensive than others

• Some patterns might be more useful for the task at hand than others

28/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

How to select the patterns?

• Some patterns are more expensive than others
• Some patterns might be more useful for the task at hand than others

28/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

How to select the patterns?

• Some patterns are more expensive than others
• Some patterns might be more useful for the task at hand than others

We will now see two variants how to select patterns

29/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Graph Homomorphism Convolution (GHC) NT and Maehara (2020)

• Introduce homomorphism
counts as feature vectors of
graphs

• Propose to select ’suitable,
small’ pattern set F

– The first 13 trees
– Cycles up to length 7

• Use an SVM with these features

Graph Homomorphism Convolution

Hoang NT 1 2 Takanori Maehara 1

Abstract
In this paper, we study the graph classification
problem from the graph homomorphism perspec-
tive. We consider the homomorphisms from F to
G, where G is a graph of interest (e.g. molecules
or social networks) and F belongs to some family
of graphs (e.g. paths or non-isomorphic trees).
We show that graph homomorphism numbers pro-
vide a natural invariant (isomorphism invariant
and F-invariant) embedding maps which can be
used for graph classification. Viewing the ex-
pressive power of a graph classifier by the F-
indistinguishable concept, we prove the universal-
ity property of graph homomorphism vectors in
approximating F -invariant functions. In practice,
by choosingF whose elements have bounded tree-
width, we show that the homomorphism method
is efficient compared with other methods.

1. Introduction
1.1. Background

In many fields of science, objects of interest often exhibit
irregular structures. For example, in biology or chemistry,
molecules and protein interactions are often modeled as
graphs (Milo et al., 2002; Benson et al., 2016). In multi-
physics numerical analyses, methods such as the finite ele-
ment methods discretize the sample under study by 2D/3D-
meshes (Mezentsev, 2004; Fey et al., 2018). In social stud-
ies, interactions between people are presented as a social
network (Barabási et al., 2016). Understanding these irregu-
lar non-Euclidean structures have yielded valuable scientific
and engineering insights. With recent successful develop-
ments of machine learning on regular Euclidean data such
as images, a natural extension challenge arises: How do we
learn from non-Euclidean data such as networks or meshes
modeled as graphs?

1RIKEN Center for Advanced Intelligence Project, Tokyo,
Japan 2Tokyo Institute of Technology, Tokyo, Japan. Correspon-
dence to: Hoang NT <me@gearons.org>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Geometric (deep) learning (Bronstein et al., 2017) is an
important extension of machine learning as it generalizes
learning methods from Euclidean data to non-Euclidean
data. This branch of machine learning not only deals with
learning irregular data but also provides a proper means to
combine meta-data with their underlying structure. There-
fore, geometric learning methods have enabled the appli-
cation of machine learning to real-world problems: From
categorizing complex social interactions to generating new
chemical molecules. Among these methods, graph-learning
models for the classification task have been the most impor-
tant subject of study.

Let X be the space of features (e.g., X = Rd for some
positive integer d), Y be the space of outcomes (e.g., Y =
{0, 1}), and G = (V (G), E(G)) be a graph with a vertex
set V (G) and edge set E(G) ⊆ V (G)× V (G). The graph
classification problem is stated follow1.

Problem 1 (Graph Classification Problem). We are given
a set of tuples {(Gi, xi, yi) : i = 1, . . . , N} of graphs
Gi = (V (Gi), E(Gi)), vertex features xi : V (Gi) → X ,
and outcomes yi ∈ Y . The task is to learn a hypothesis h
such that h((Gi, xi)) ≈ yi. 2

Problem 1 has been studied both theoretically and empiri-
cally. Theoretical graph classification models often discuss
the universality properties of some targeted function class.
While we can identify the function classes which these the-
oretical models can approximate, practical implementations
pose many challenges. For instance, the tensorized model
proposed by (Keriven & Peyré, 2019) is universal in the
space of continuous functions on bounded size graphs, but
it is impractical to implement such a model. On the other
hand, little is known about the class of functions which can
be estimated by some practical state-of-the-art models. To
address these disadvantages of both theoretical models and
practical models, we need a practical graph classification
model whose approximation capability can be parameter-
ized. Such a model is not only effective in practice, as
we can introduce inductive bias to the design by the afore-
mentioned parameterization, but also useful in theory as a
framework to study the graph classification problem.

1This setting also includes the regression problem.
2h can be a machine learning model with a given training set.

29/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Graph Homomorphism Convolution (GHC) NT and Maehara (2020)

• Introduce homomorphism
counts as feature vectors of
graphs
• Propose to select ’suitable,

small’ pattern set F

– The first 13 trees
– Cycles up to length 7

• Use an SVM with these features

Graph Homomorphism Convolution

Hoang NT 1 2 Takanori Maehara 1

Abstract
In this paper, we study the graph classification
problem from the graph homomorphism perspec-
tive. We consider the homomorphisms from F to
G, where G is a graph of interest (e.g. molecules
or social networks) and F belongs to some family
of graphs (e.g. paths or non-isomorphic trees).
We show that graph homomorphism numbers pro-
vide a natural invariant (isomorphism invariant
and F-invariant) embedding maps which can be
used for graph classification. Viewing the ex-
pressive power of a graph classifier by the F-
indistinguishable concept, we prove the universal-
ity property of graph homomorphism vectors in
approximating F -invariant functions. In practice,
by choosingF whose elements have bounded tree-
width, we show that the homomorphism method
is efficient compared with other methods.

1. Introduction
1.1. Background

In many fields of science, objects of interest often exhibit
irregular structures. For example, in biology or chemistry,
molecules and protein interactions are often modeled as
graphs (Milo et al., 2002; Benson et al., 2016). In multi-
physics numerical analyses, methods such as the finite ele-
ment methods discretize the sample under study by 2D/3D-
meshes (Mezentsev, 2004; Fey et al., 2018). In social stud-
ies, interactions between people are presented as a social
network (Barabási et al., 2016). Understanding these irregu-
lar non-Euclidean structures have yielded valuable scientific
and engineering insights. With recent successful develop-
ments of machine learning on regular Euclidean data such
as images, a natural extension challenge arises: How do we
learn from non-Euclidean data such as networks or meshes
modeled as graphs?

1RIKEN Center for Advanced Intelligence Project, Tokyo,
Japan 2Tokyo Institute of Technology, Tokyo, Japan. Correspon-
dence to: Hoang NT <me@gearons.org>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Geometric (deep) learning (Bronstein et al., 2017) is an
important extension of machine learning as it generalizes
learning methods from Euclidean data to non-Euclidean
data. This branch of machine learning not only deals with
learning irregular data but also provides a proper means to
combine meta-data with their underlying structure. There-
fore, geometric learning methods have enabled the appli-
cation of machine learning to real-world problems: From
categorizing complex social interactions to generating new
chemical molecules. Among these methods, graph-learning
models for the classification task have been the most impor-
tant subject of study.

Let X be the space of features (e.g., X = Rd for some
positive integer d), Y be the space of outcomes (e.g., Y =
{0, 1}), and G = (V (G), E(G)) be a graph with a vertex
set V (G) and edge set E(G) ⊆ V (G)× V (G). The graph
classification problem is stated follow1.

Problem 1 (Graph Classification Problem). We are given
a set of tuples {(Gi, xi, yi) : i = 1, . . . , N} of graphs
Gi = (V (Gi), E(Gi)), vertex features xi : V (Gi) → X ,
and outcomes yi ∈ Y . The task is to learn a hypothesis h
such that h((Gi, xi)) ≈ yi. 2

Problem 1 has been studied both theoretically and empiri-
cally. Theoretical graph classification models often discuss
the universality properties of some targeted function class.
While we can identify the function classes which these the-
oretical models can approximate, practical implementations
pose many challenges. For instance, the tensorized model
proposed by (Keriven & Peyré, 2019) is universal in the
space of continuous functions on bounded size graphs, but
it is impractical to implement such a model. On the other
hand, little is known about the class of functions which can
be estimated by some practical state-of-the-art models. To
address these disadvantages of both theoretical models and
practical models, we need a practical graph classification
model whose approximation capability can be parameter-
ized. Such a model is not only effective in practice, as
we can introduce inductive bias to the design by the afore-
mentioned parameterization, but also useful in theory as a
framework to study the graph classification problem.

1This setting also includes the regression problem.
2h can be a machine learning model with a given training set.

29/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Graph Homomorphism Convolution (GHC) NT and Maehara (2020)

• Introduce homomorphism
counts as feature vectors of
graphs
• Propose to select ’suitable,

small’ pattern set F
– The first 13 trees

– Cycles up to length 7
• Use an SVM with these features

Graph Homomorphism Convolution

Hoang NT 1 2 Takanori Maehara 1

Abstract
In this paper, we study the graph classification
problem from the graph homomorphism perspec-
tive. We consider the homomorphisms from F to
G, where G is a graph of interest (e.g. molecules
or social networks) and F belongs to some family
of graphs (e.g. paths or non-isomorphic trees).
We show that graph homomorphism numbers pro-
vide a natural invariant (isomorphism invariant
and F-invariant) embedding maps which can be
used for graph classification. Viewing the ex-
pressive power of a graph classifier by the F-
indistinguishable concept, we prove the universal-
ity property of graph homomorphism vectors in
approximating F -invariant functions. In practice,
by choosingF whose elements have bounded tree-
width, we show that the homomorphism method
is efficient compared with other methods.

1. Introduction
1.1. Background

In many fields of science, objects of interest often exhibit
irregular structures. For example, in biology or chemistry,
molecules and protein interactions are often modeled as
graphs (Milo et al., 2002; Benson et al., 2016). In multi-
physics numerical analyses, methods such as the finite ele-
ment methods discretize the sample under study by 2D/3D-
meshes (Mezentsev, 2004; Fey et al., 2018). In social stud-
ies, interactions between people are presented as a social
network (Barabási et al., 2016). Understanding these irregu-
lar non-Euclidean structures have yielded valuable scientific
and engineering insights. With recent successful develop-
ments of machine learning on regular Euclidean data such
as images, a natural extension challenge arises: How do we
learn from non-Euclidean data such as networks or meshes
modeled as graphs?

1RIKEN Center for Advanced Intelligence Project, Tokyo,
Japan 2Tokyo Institute of Technology, Tokyo, Japan. Correspon-
dence to: Hoang NT <me@gearons.org>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Geometric (deep) learning (Bronstein et al., 2017) is an
important extension of machine learning as it generalizes
learning methods from Euclidean data to non-Euclidean
data. This branch of machine learning not only deals with
learning irregular data but also provides a proper means to
combine meta-data with their underlying structure. There-
fore, geometric learning methods have enabled the appli-
cation of machine learning to real-world problems: From
categorizing complex social interactions to generating new
chemical molecules. Among these methods, graph-learning
models for the classification task have been the most impor-
tant subject of study.

Let X be the space of features (e.g., X = Rd for some
positive integer d), Y be the space of outcomes (e.g., Y =
{0, 1}), and G = (V (G), E(G)) be a graph with a vertex
set V (G) and edge set E(G) ⊆ V (G)× V (G). The graph
classification problem is stated follow1.

Problem 1 (Graph Classification Problem). We are given
a set of tuples {(Gi, xi, yi) : i = 1, . . . , N} of graphs
Gi = (V (Gi), E(Gi)), vertex features xi : V (Gi) → X ,
and outcomes yi ∈ Y . The task is to learn a hypothesis h
such that h((Gi, xi)) ≈ yi. 2

Problem 1 has been studied both theoretically and empiri-
cally. Theoretical graph classification models often discuss
the universality properties of some targeted function class.
While we can identify the function classes which these the-
oretical models can approximate, practical implementations
pose many challenges. For instance, the tensorized model
proposed by (Keriven & Peyré, 2019) is universal in the
space of continuous functions on bounded size graphs, but
it is impractical to implement such a model. On the other
hand, little is known about the class of functions which can
be estimated by some practical state-of-the-art models. To
address these disadvantages of both theoretical models and
practical models, we need a practical graph classification
model whose approximation capability can be parameter-
ized. Such a model is not only effective in practice, as
we can introduce inductive bias to the design by the afore-
mentioned parameterization, but also useful in theory as a
framework to study the graph classification problem.

1This setting also includes the regression problem.
2h can be a machine learning model with a given training set.

29/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Graph Homomorphism Convolution (GHC) NT and Maehara (2020)

• Introduce homomorphism
counts as feature vectors of
graphs
• Propose to select ’suitable,

small’ pattern set F
– The first 13 trees
– Cycles up to length 7

• Use an SVM with these features

Graph Homomorphism Convolution

Hoang NT 1 2 Takanori Maehara 1

Abstract
In this paper, we study the graph classification
problem from the graph homomorphism perspec-
tive. We consider the homomorphisms from F to
G, where G is a graph of interest (e.g. molecules
or social networks) and F belongs to some family
of graphs (e.g. paths or non-isomorphic trees).
We show that graph homomorphism numbers pro-
vide a natural invariant (isomorphism invariant
and F-invariant) embedding maps which can be
used for graph classification. Viewing the ex-
pressive power of a graph classifier by the F-
indistinguishable concept, we prove the universal-
ity property of graph homomorphism vectors in
approximating F -invariant functions. In practice,
by choosingF whose elements have bounded tree-
width, we show that the homomorphism method
is efficient compared with other methods.

1. Introduction
1.1. Background

In many fields of science, objects of interest often exhibit
irregular structures. For example, in biology or chemistry,
molecules and protein interactions are often modeled as
graphs (Milo et al., 2002; Benson et al., 2016). In multi-
physics numerical analyses, methods such as the finite ele-
ment methods discretize the sample under study by 2D/3D-
meshes (Mezentsev, 2004; Fey et al., 2018). In social stud-
ies, interactions between people are presented as a social
network (Barabási et al., 2016). Understanding these irregu-
lar non-Euclidean structures have yielded valuable scientific
and engineering insights. With recent successful develop-
ments of machine learning on regular Euclidean data such
as images, a natural extension challenge arises: How do we
learn from non-Euclidean data such as networks or meshes
modeled as graphs?

1RIKEN Center for Advanced Intelligence Project, Tokyo,
Japan 2Tokyo Institute of Technology, Tokyo, Japan. Correspon-
dence to: Hoang NT <me@gearons.org>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Geometric (deep) learning (Bronstein et al., 2017) is an
important extension of machine learning as it generalizes
learning methods from Euclidean data to non-Euclidean
data. This branch of machine learning not only deals with
learning irregular data but also provides a proper means to
combine meta-data with their underlying structure. There-
fore, geometric learning methods have enabled the appli-
cation of machine learning to real-world problems: From
categorizing complex social interactions to generating new
chemical molecules. Among these methods, graph-learning
models for the classification task have been the most impor-
tant subject of study.

Let X be the space of features (e.g., X = Rd for some
positive integer d), Y be the space of outcomes (e.g., Y =
{0, 1}), and G = (V (G), E(G)) be a graph with a vertex
set V (G) and edge set E(G) ⊆ V (G)× V (G). The graph
classification problem is stated follow1.

Problem 1 (Graph Classification Problem). We are given
a set of tuples {(Gi, xi, yi) : i = 1, . . . , N} of graphs
Gi = (V (Gi), E(Gi)), vertex features xi : V (Gi) → X ,
and outcomes yi ∈ Y . The task is to learn a hypothesis h
such that h((Gi, xi)) ≈ yi. 2

Problem 1 has been studied both theoretically and empiri-
cally. Theoretical graph classification models often discuss
the universality properties of some targeted function class.
While we can identify the function classes which these the-
oretical models can approximate, practical implementations
pose many challenges. For instance, the tensorized model
proposed by (Keriven & Peyré, 2019) is universal in the
space of continuous functions on bounded size graphs, but
it is impractical to implement such a model. On the other
hand, little is known about the class of functions which can
be estimated by some practical state-of-the-art models. To
address these disadvantages of both theoretical models and
practical models, we need a practical graph classification
model whose approximation capability can be parameter-
ized. Such a model is not only effective in practice, as
we can introduce inductive bias to the design by the afore-
mentioned parameterization, but also useful in theory as a
framework to study the graph classification problem.

1This setting also includes the regression problem.
2h can be a machine learning model with a given training set.

29/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Graph Homomorphism Convolution (GHC) NT and Maehara (2020)

• Introduce homomorphism
counts as feature vectors of
graphs
• Propose to select ’suitable,

small’ pattern set F
– The first 13 trees
– Cycles up to length 7

• Use an SVM with these features
Graph Homomorphism Convolution

Hoang NT 1 2 Takanori Maehara 1

Abstract
In this paper, we study the graph classification
problem from the graph homomorphism perspec-
tive. We consider the homomorphisms from F to
G, where G is a graph of interest (e.g. molecules
or social networks) and F belongs to some family
of graphs (e.g. paths or non-isomorphic trees).
We show that graph homomorphism numbers pro-
vide a natural invariant (isomorphism invariant
and F-invariant) embedding maps which can be
used for graph classification. Viewing the ex-
pressive power of a graph classifier by the F-
indistinguishable concept, we prove the universal-
ity property of graph homomorphism vectors in
approximating F -invariant functions. In practice,
by choosingF whose elements have bounded tree-
width, we show that the homomorphism method
is efficient compared with other methods.

1. Introduction
1.1. Background

In many fields of science, objects of interest often exhibit
irregular structures. For example, in biology or chemistry,
molecules and protein interactions are often modeled as
graphs (Milo et al., 2002; Benson et al., 2016). In multi-
physics numerical analyses, methods such as the finite ele-
ment methods discretize the sample under study by 2D/3D-
meshes (Mezentsev, 2004; Fey et al., 2018). In social stud-
ies, interactions between people are presented as a social
network (Barabási et al., 2016). Understanding these irregu-
lar non-Euclidean structures have yielded valuable scientific
and engineering insights. With recent successful develop-
ments of machine learning on regular Euclidean data such
as images, a natural extension challenge arises: How do we
learn from non-Euclidean data such as networks or meshes
modeled as graphs?

1RIKEN Center for Advanced Intelligence Project, Tokyo,
Japan 2Tokyo Institute of Technology, Tokyo, Japan. Correspon-
dence to: Hoang NT <me@gearons.org>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Geometric (deep) learning (Bronstein et al., 2017) is an
important extension of machine learning as it generalizes
learning methods from Euclidean data to non-Euclidean
data. This branch of machine learning not only deals with
learning irregular data but also provides a proper means to
combine meta-data with their underlying structure. There-
fore, geometric learning methods have enabled the appli-
cation of machine learning to real-world problems: From
categorizing complex social interactions to generating new
chemical molecules. Among these methods, graph-learning
models for the classification task have been the most impor-
tant subject of study.

Let X be the space of features (e.g., X = Rd for some
positive integer d), Y be the space of outcomes (e.g., Y =
{0, 1}), and G = (V (G), E(G)) be a graph with a vertex
set V (G) and edge set E(G) ⊆ V (G)× V (G). The graph
classification problem is stated follow1.

Problem 1 (Graph Classification Problem). We are given
a set of tuples {(Gi, xi, yi) : i = 1, . . . , N} of graphs
Gi = (V (Gi), E(Gi)), vertex features xi : V (Gi) → X ,
and outcomes yi ∈ Y . The task is to learn a hypothesis h
such that h((Gi, xi)) ≈ yi. 2

Problem 1 has been studied both theoretically and empiri-
cally. Theoretical graph classification models often discuss
the universality properties of some targeted function class.
While we can identify the function classes which these the-
oretical models can approximate, practical implementations
pose many challenges. For instance, the tensorized model
proposed by (Keriven & Peyré, 2019) is universal in the
space of continuous functions on bounded size graphs, but
it is impractical to implement such a model. On the other
hand, little is known about the class of functions which can
be estimated by some practical state-of-the-art models. To
address these disadvantages of both theoretical models and
practical models, we need a practical graph classification
model whose approximation capability can be parameter-
ized. Such a model is not only effective in practice, as
we can introduce inductive bias to the design by the afore-
mentioned parameterization, but also useful in theory as a
framework to study the graph classification problem.

1This setting also includes the regression problem.
2h can be a machine learning model with a given training set.

30/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

GHC: Experimental results

• Good results on some synthetic
datasets
• Competitive results on (smaller)

benchmark datasets

30/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

GHC: Experimental results

• Good results on some synthetic
datasets

• Competitive results on (smaller)
benchmark datasets

30/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

GHC: Experimental results

• Good results on some synthetic
datasets
• Competitive results on (smaller)

benchmark datasets

31/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

GHC is incomplete

• GHC in practice requires a fixed,
user defined choice of the
pattern set F

• This allows to bound the
expressivity of GHC by an
extension of the WL algorithm:
k-WL Neuen (2024)

31/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

GHC is incomplete

• GHC in practice requires a fixed,
user defined choice of the
pattern set F
• This allows to bound the

expressivity of GHC by an
extension of the WL algorithm:
k-WL Neuen (2024)

32/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Expectation-Complete Graph Representations
with Homomorphisms

ICML 2023

Pascal Welke*, Maximilian Thiessen*, Fabian Jogl, and Thomas Gärtner

33/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

At a glance

?
• Expressiveness bounded by k-WL

⇒ choice of architecture implies a
fixed limit on what graphs can be
distinguished
• What can we do if we don’t know

anything about our datset?

• We present an architecture
which has no upper expressivity
bound
• Asymptotically, our graph

representation is complete.
⇒ allows to adapt to challenging

learning tasks without domain
knowledge

⇒ works well in practice

33/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

At a glance

?
• Expressiveness bounded by k-WL
⇒ choice of architecture implies a

fixed limit on what graphs can be
distinguished

• What can we do if we don’t know
anything about our datset?

• We present an architecture
which has no upper expressivity
bound
• Asymptotically, our graph

representation is complete.
⇒ allows to adapt to challenging

learning tasks without domain
knowledge

⇒ works well in practice

33/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

At a glance

?
• Expressiveness bounded by k-WL
⇒ choice of architecture implies a

fixed limit on what graphs can be
distinguished
• What can we do if we don’t know

anything about our datset?

• We present an architecture
which has no upper expressivity
bound
• Asymptotically, our graph

representation is complete.
⇒ allows to adapt to challenging

learning tasks without domain
knowledge

⇒ works well in practice

33/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

At a glance

?
• Expressiveness bounded by k-WL
⇒ choice of architecture implies a

fixed limit on what graphs can be
distinguished
• What can we do if we don’t know

anything about our datset?

!
• We present an architecture

which has no upper expressivity
bound

• Asymptotically, our graph
representation is complete.

⇒ allows to adapt to challenging
learning tasks without domain
knowledge

⇒ works well in practice

33/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

At a glance

?
• Expressiveness bounded by k-WL
⇒ choice of architecture implies a

fixed limit on what graphs can be
distinguished
• What can we do if we don’t know

anything about our datset?

!
• We present an architecture

which has no upper expressivity
bound
• Asymptotically, our graph

representation is complete.

⇒ allows to adapt to challenging
learning tasks without domain
knowledge

⇒ works well in practice

33/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

At a glance

?
• Expressiveness bounded by k-WL
⇒ choice of architecture implies a

fixed limit on what graphs can be
distinguished
• What can we do if we don’t know

anything about our datset?

!
• We present an architecture

which has no upper expressivity
bound
• Asymptotically, our graph

representation is complete.
⇒ allows to adapt to challenging

learning tasks without domain
knowledge

⇒ works well in practice

33/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

At a glance

?
• Expressiveness bounded by k-WL
⇒ choice of architecture implies a

fixed limit on what graphs can be
distinguished
• What can we do if we don’t know

anything about our datset?

!
• We present an architecture

which has no upper expressivity
bound
• Asymptotically, our graph

representation is complete.
⇒ allows to adapt to challenging

learning tasks without domain
knowledge

⇒ works well in practice

34/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

What if we keep completeness . . .

. . . in expectation?

35/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Expectation complete graph embeddings

Let ϕX : G → V depend on a random variable X drawn from a distr. D over a set X

We call ϕX complete in expectation if the expectation

E
X∼D

[ϕX(·)] = ∑
t∈X

Pr(X = t)ϕt(·)

is a complete graph embedding

35/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Expectation complete graph embeddings

Let ϕX : G → V depend on a random variable X drawn from a distr. D over a set X
We call ϕX complete in expectation if the expectation

E
X∼D

[ϕX(·)] = ∑
t∈X

Pr(X = t)ϕt(·)

is a complete graph embedding

36/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

What is the benefit?

Sampling X1, X2, X3, . . . will eventually
make the joint embedding

(ϕX1(G), ϕX2(G), ϕX3(G), . . .)

arbitrarily expressive

36/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

What is the benefit?

Sampling X1, X2, X3, . . . will eventually
make the joint embedding

(ϕX1(G), ϕX2(G), ϕX3(G), . . .)

arbitrarily expressive

36/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

What is the benefit?

Sampling X1, X2, X3, . . . will eventually
make the joint embedding

(ϕX1(G), ϕX2(G), ϕX3(G), . . .)

arbitrarily expressive

36/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

What is the benefit?

Sampling X1, X2, X3, . . . will eventually
make the joint embedding

(ϕX1(G), ϕX2(G), ϕX3(G), . . .)

arbitrarily expressive

36/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

What is the benefit?

Sampling X1, X2, X3, . . . will eventually
make the joint embedding

(ϕX1(G), ϕX2(G), ϕX3(G), . . .)

arbitrarily expressive

37/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

What if we keep completeness . . .
. . . in expectation

. . . efficiently

38/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

An intractable complete graph embedding

20
60

←

260
60

←

...
...

340

←

...
...
120

←

...
...

0
60
0
60

... 0
340

... 0
120

... 0

G

φn(G)

φF (G)

38/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

An intractable complete graph embedding

20
60 ←
260
60 ←

...
...

340 ←
...

...
120 ←

...
...

0
60
0
60

... 0
340

... 0
120

... 0

G

φn(G)

φF (G)

38/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

An intractable complete graph embedding

20
60 ←
260
60 ←

...
...

340 ←
...

...
120 ←

...
...

0
60
0
60

... 0
340

... 0
120

... 0

G

φn(G) φF (G)

39/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Efficient and expectation-complete graph embeddings

• Homomorphism counting is fixed parameter tractable

• We design a distribution D that weights down expensive patterns

Theorem (ICML 2023)

Computing the expectation-complete graph embedding ϕX(G) with X ∼ D takes
polynomial time in V(G) in expectation for all G ∈ Gn.

• We also showed

– convergence results
– universal approximation results

39/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Efficient and expectation-complete graph embeddings

• Homomorphism counting is fixed parameter tractable
• We design a distribution D that weights down expensive patterns

Theorem (ICML 2023)

Computing the expectation-complete graph embedding ϕX(G) with X ∼ D takes
polynomial time in V(G) in expectation for all G ∈ Gn.

• We also showed

– convergence results
– universal approximation results

39/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Efficient and expectation-complete graph embeddings

• Homomorphism counting is fixed parameter tractable
• We design a distribution D that weights down expensive patterns

Theorem (ICML 2023)

Computing the expectation-complete graph embedding ϕX(G) with X ∼ D takes
polynomial time in V(G) in expectation for all G ∈ Gn.

• We also showed

– convergence results
– universal approximation results

39/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Efficient and expectation-complete graph embeddings

• Homomorphism counting is fixed parameter tractable
• We design a distribution D that weights down expensive patterns

Theorem (ICML 2023)

Computing the expectation-complete graph embedding ϕX(G) with X ∼ D takes
polynomial time in V(G) in expectation for all G ∈ Gn.

• We also showed

– convergence results
– universal approximation results

39/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Efficient and expectation-complete graph embeddings

• Homomorphism counting is fixed parameter tractable
• We design a distribution D that weights down expensive patterns

Theorem (ICML 2023)

Computing the expectation-complete graph embedding ϕX(G) with X ∼ D takes
polynomial time in V(G) in expectation for all G ∈ Gn.

• We also showed
– convergence results

– universal approximation results

39/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Efficient and expectation-complete graph embeddings

• Homomorphism counting is fixed parameter tractable
• We design a distribution D that weights down expensive patterns

Theorem (ICML 2023)

Computing the expectation-complete graph embedding ϕX(G) with X ∼ D takes
polynomial time in V(G) in expectation for all G ∈ Gn.

• We also showed
– convergence results
– universal approximation results

40/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Efficient and expectation-complete GNNs

We can make any (message passing) GNN expectation-complete

G

GNN
Layers

Graph
Pooling ·...

·

ϕF (G)

 ·...
·

⊕

MLP

y(G)

LoG 2023
ICML 2023

40/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Efficient and expectation-complete GNNs

We can make any (message passing) GNN expectation-complete

G

GNN
Layers

Graph
Pooling ·...

·

ϕF (G)

 ·...
·

⊕

MLP

y(G)

LoG 2023
ICML 2023

41/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Empirical results

41/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Empirical results

42/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

An open question and a recent answer

• Our runtime is polynomial in expectation, but

– We can realistically sample 20-100 patterns
– (that suffices in practice)

• How can we speedup the runtime while maintaining the theoretical
properties?

• Beaujean et al (2021)

• BSc thesis 2023

• KDD 2020

• fast and precise in practice

42/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

An open question and a recent answer

• Our runtime is polynomial in expectation, but
– We can realistically sample 20-100 patterns
– (that suffices in practice)

• How can we speedup the runtime while maintaining the theoretical
properties?

• Beaujean et al (2021)

• BSc thesis 2023

• KDD 2020

• fast and precise in practice

42/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

An open question and a recent answer

• Our runtime is polynomial in expectation, but
– We can realistically sample 20-100 patterns
– (that suffices in practice)

• How can we speedup the runtime while maintaining the theoretical
properties?

• Beaujean et al (2021)

• BSc thesis 2023

• KDD 2020

• fast and precise in practice

42/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

An open question and a recent answer

• Our runtime is polynomial in expectation, but
– We can realistically sample 20-100 patterns
– (that suffices in practice)

• How can we speedup the runtime while maintaining the theoretical
properties?

Estimating homomorphism counts instead of exact computation might work well

• Beaujean et al (2021)

• BSc thesis 2023

• KDD 2020

• fast and precise in practice

42/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

An open question and a recent answer

• Our runtime is polynomial in expectation, but
– We can realistically sample 20-100 patterns
– (that suffices in practice)

• How can we speedup the runtime while maintaining the theoretical
properties?

Estimating homomorphism counts instead of exact computation might work well

• Beaujean et al (2021)

• BSc thesis 2023

• KDD 2020

• fast and precise in practice

42/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

An open question and a recent answer

• Our runtime is polynomial in expectation, but
– We can realistically sample 20-100 patterns
– (that suffices in practice)

• How can we speedup the runtime while maintaining the theoretical
properties?

Estimating homomorphism counts instead of exact computation might work well

• Beaujean et al (2021)

• BSc thesis 2023

• KDD 2020

• fast and precise in practice

42/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

An open question and a recent answer

• Our runtime is polynomial in expectation, but
– We can realistically sample 20-100 patterns
– (that suffices in practice)

• How can we speedup the runtime while maintaining the theoretical
properties?

Estimating homomorphism counts instead of exact computation might work well

• Beaujean et al (2021)

• BSc thesis 2023

• KDD 2020

• fast and precise in practice

42/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

An open question and a recent answer

• Our runtime is polynomial in expectation, but
– We can realistically sample 20-100 patterns
– (that suffices in practice)

• How can we speedup the runtime while maintaining the theoretical
properties?

Estimating homomorphism counts instead of exact computation might work well

• Beaujean et al (2021)

• BSc thesis 2023

• KDD 2020

• fast and precise in practice

Homomorphism Counts as Node Representations

44/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Connecting homomorphism counting and message passing

• So far, message passing and homomorphism counting have touched, but not
really interacted

• Homomorphism counts can also be included in the message passing

44/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Connecting homomorphism counting and message passing

• So far, message passing and homomorphism counting have touched, but not
really interacted
• Homomorphism counts can also be included in the message passing

45/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Rooted homomorphism counting

A rooted graph (G, v) is a graph
G with a special root v ∈ V(G)

A rooted homomorphism h from
(H, r) to (G, v) is a
homomorphism h with h(r) = v
• We can now count rooted

homomorphisms for any node v
in G

45/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Rooted homomorphism counting

A rooted graph (G, v) is a graph
G with a special root v ∈ V(G)
A rooted homomorphism h from
(H, r) to (G, v) is a
homomorphism h with h(r) = v

• We can now count rooted
homomorphisms for any node v
in G

45/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Rooted homomorphism counting

A rooted graph (G, v) is a graph
G with a special root v ∈ V(G)
A rooted homomorphism h from
(H, r) to (G, v) is a
homomorphism h with h(r) = v

• We can now count rooted
homomorphisms for any node v
in G

45/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Rooted homomorphism counting

A rooted graph (G, v) is a graph
G with a special root v ∈ V(G)
A rooted homomorphism h from
(H, r) to (G, v) is a
homomorphism h with h(r) = v

• We can now count rooted
homomorphisms for any node v
in G

45/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Rooted homomorphism counting

A rooted graph (G, v) is a graph
G with a special root v ∈ V(G)
A rooted homomorphism h from
(H, r) to (G, v) is a
homomorphism h with h(r) = v
• We can now count rooted

homomorphisms for any node v
in G

45/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Rooted homomorphism counting

A rooted graph (G, v) is a graph
G with a special root v ∈ V(G)
A rooted homomorphism h from
(H, r) to (G, v) is a
homomorphism h with h(r) = v
• We can now count rooted

homomorphisms for any node v
in G

46/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Graph Homomorphism Convolution (F-MPNNs) Barceló et al (2021)

G

1 2 3 L

⊕
MLP

· · ·

add hom-counts here

• This architecture is more
expressive than WL

• It is incomparable to 2-WL
• Can be bounded by F-WL (!)

Graph Neural Networks with Local Graph
Parameters

Pablo Barceló1,2, Floris Geerts3, Juan Reutter1,2, Maksimilian Ryschkov3
1 Department of Computer Science, PUC, Chile

2 Millennium Institute for Foundational Research on Data, Chile
3 Department of Computer Science, University of Antwerp, Belgium

[pbarcelo,jreutter]@ing.puc.cl, [floris.geerts,maksimilian.ryschkov]@uantwerpen.be

Abstract

Various recent proposals increase the distinguishing power of Graph Neural Net-
works (GNNs) by propagating features between k-tuples of vertices. The distin-
guishing power of these “higher-order” GNNs is known to be bounded by the
k-dimensional Weisfeiler-Leman (WL) test, yet their O(nk) memory requirements
limit their applicability. Other proposals infuse GNNs with local higher-order graph
structural information from the start, hereby inheriting the desirable O(n) memory
requirement from GNNs at the cost of a one-time, possibly non-linear, preprocess-
ing step. We propose local graph parameter enabled GNNs as a framework for
studying the latter kind of approaches. We precisely characterize their distinguish-
ing power, in terms of a variant of the WL test, and in terms of the graph structural
properties that they can take into account. Local graph parameters can be added to
any GNN architecture, and are cheap to compute. In terms of expressive power, our
proposal lies in the middle of GNNs and their higher-order counterparts. Further,
we propose several techniques to aid in choosing the right local graph parameters.
Our results connect GNNs with deep results in finite model theory and finite vari-
able logics. Our experimental evaluation shows that adding local graph parameters
often has a positive effect on a variety of GNNs, datasets and graph learning tasks.

1 Introduction

Context. Graph neural networks (GNNs) [Merkwirth and Lengauer, 2005, Scarselli et al., 2009],
and its important class of Message Passing Neural Networks (MPNNs) [Gilmer et al., 2017], are one
of the most popular methods for graph learning tasks. Such MPNNs use an iterative message passing
scheme, based on the adjacency structure of the underlying graph, to compute vertex (and graph)
embeddings in some real Euclidean space.

The expressive (or distinguishing) power of MPNNs is, however, rather limited [Morris et al., 2019,
Xu et al., 2019]. Indeed, MPNNs will always identically embed two vertices (graphs) when these
vertices (graphs) cannot be distinguished by the one-dimensional Weisfeiler-Leman (WL) algorithm.
Two graphs G1 and H1 and vertices v and w that cannot be distinguished by WL (and thus any
MPNN) are shown in Fig. 1. The expressive power of WL is well-understood [Cai et al., 1992, Dell
et al., 2018, Arvind et al., 2020] and basically can only use tree-based structural information in
the graphs to distinguish vertices. Hence, no MPNN can detect that vertex v in Fig. 1 is part of a
3-clique, whereas w is not. Similarly, MPNNs cannot detect that w is part of a 4-cycle, whereas v is
not. Further limitations of WL in terms of graph properties can be found, e.g., in Arvind et al. [2020],
Chen et al. [2020] and Tahmasebi and Jegelka [2020].

To remedy the weak expressive power of MPNNs, so-called higher-order MPNNs were proposed
[Maron et al., 2019a, Morris et al., 2019, 2020], whose expressive power is well-understood and

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

46/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Graph Homomorphism Convolution (F-MPNNs) Barceló et al (2021)

G

1 2 3 L

⊕
MLP

· · ·

add hom-counts here

• This architecture is more
expressive than WL
• It is incomparable to 2-WL

• Can be bounded by F-WL (!)

Graph Neural Networks with Local Graph
Parameters

Pablo Barceló1,2, Floris Geerts3, Juan Reutter1,2, Maksimilian Ryschkov3
1 Department of Computer Science, PUC, Chile

2 Millennium Institute for Foundational Research on Data, Chile
3 Department of Computer Science, University of Antwerp, Belgium

[pbarcelo,jreutter]@ing.puc.cl, [floris.geerts,maksimilian.ryschkov]@uantwerpen.be

Abstract

Various recent proposals increase the distinguishing power of Graph Neural Net-
works (GNNs) by propagating features between k-tuples of vertices. The distin-
guishing power of these “higher-order” GNNs is known to be bounded by the
k-dimensional Weisfeiler-Leman (WL) test, yet their O(nk) memory requirements
limit their applicability. Other proposals infuse GNNs with local higher-order graph
structural information from the start, hereby inheriting the desirable O(n) memory
requirement from GNNs at the cost of a one-time, possibly non-linear, preprocess-
ing step. We propose local graph parameter enabled GNNs as a framework for
studying the latter kind of approaches. We precisely characterize their distinguish-
ing power, in terms of a variant of the WL test, and in terms of the graph structural
properties that they can take into account. Local graph parameters can be added to
any GNN architecture, and are cheap to compute. In terms of expressive power, our
proposal lies in the middle of GNNs and their higher-order counterparts. Further,
we propose several techniques to aid in choosing the right local graph parameters.
Our results connect GNNs with deep results in finite model theory and finite vari-
able logics. Our experimental evaluation shows that adding local graph parameters
often has a positive effect on a variety of GNNs, datasets and graph learning tasks.

1 Introduction

Context. Graph neural networks (GNNs) [Merkwirth and Lengauer, 2005, Scarselli et al., 2009],
and its important class of Message Passing Neural Networks (MPNNs) [Gilmer et al., 2017], are one
of the most popular methods for graph learning tasks. Such MPNNs use an iterative message passing
scheme, based on the adjacency structure of the underlying graph, to compute vertex (and graph)
embeddings in some real Euclidean space.

The expressive (or distinguishing) power of MPNNs is, however, rather limited [Morris et al., 2019,
Xu et al., 2019]. Indeed, MPNNs will always identically embed two vertices (graphs) when these
vertices (graphs) cannot be distinguished by the one-dimensional Weisfeiler-Leman (WL) algorithm.
Two graphs G1 and H1 and vertices v and w that cannot be distinguished by WL (and thus any
MPNN) are shown in Fig. 1. The expressive power of WL is well-understood [Cai et al., 1992, Dell
et al., 2018, Arvind et al., 2020] and basically can only use tree-based structural information in
the graphs to distinguish vertices. Hence, no MPNN can detect that vertex v in Fig. 1 is part of a
3-clique, whereas w is not. Similarly, MPNNs cannot detect that w is part of a 4-cycle, whereas v is
not. Further limitations of WL in terms of graph properties can be found, e.g., in Arvind et al. [2020],
Chen et al. [2020] and Tahmasebi and Jegelka [2020].

To remedy the weak expressive power of MPNNs, so-called higher-order MPNNs were proposed
[Maron et al., 2019a, Morris et al., 2019, 2020], whose expressive power is well-understood and

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

46/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Graph Homomorphism Convolution (F-MPNNs) Barceló et al (2021)

G

1 2 3 L

⊕
MLP

· · ·

add hom-counts here

• This architecture is more
expressive than WL
• It is incomparable to 2-WL
• Can be bounded by F-WL (!)

Graph Neural Networks with Local Graph
Parameters

Pablo Barceló1,2, Floris Geerts3, Juan Reutter1,2, Maksimilian Ryschkov3
1 Department of Computer Science, PUC, Chile

2 Millennium Institute for Foundational Research on Data, Chile
3 Department of Computer Science, University of Antwerp, Belgium

[pbarcelo,jreutter]@ing.puc.cl, [floris.geerts,maksimilian.ryschkov]@uantwerpen.be

Abstract

Various recent proposals increase the distinguishing power of Graph Neural Net-
works (GNNs) by propagating features between k-tuples of vertices. The distin-
guishing power of these “higher-order” GNNs is known to be bounded by the
k-dimensional Weisfeiler-Leman (WL) test, yet their O(nk) memory requirements
limit their applicability. Other proposals infuse GNNs with local higher-order graph
structural information from the start, hereby inheriting the desirable O(n) memory
requirement from GNNs at the cost of a one-time, possibly non-linear, preprocess-
ing step. We propose local graph parameter enabled GNNs as a framework for
studying the latter kind of approaches. We precisely characterize their distinguish-
ing power, in terms of a variant of the WL test, and in terms of the graph structural
properties that they can take into account. Local graph parameters can be added to
any GNN architecture, and are cheap to compute. In terms of expressive power, our
proposal lies in the middle of GNNs and their higher-order counterparts. Further,
we propose several techniques to aid in choosing the right local graph parameters.
Our results connect GNNs with deep results in finite model theory and finite vari-
able logics. Our experimental evaluation shows that adding local graph parameters
often has a positive effect on a variety of GNNs, datasets and graph learning tasks.

1 Introduction

Context. Graph neural networks (GNNs) [Merkwirth and Lengauer, 2005, Scarselli et al., 2009],
and its important class of Message Passing Neural Networks (MPNNs) [Gilmer et al., 2017], are one
of the most popular methods for graph learning tasks. Such MPNNs use an iterative message passing
scheme, based on the adjacency structure of the underlying graph, to compute vertex (and graph)
embeddings in some real Euclidean space.

The expressive (or distinguishing) power of MPNNs is, however, rather limited [Morris et al., 2019,
Xu et al., 2019]. Indeed, MPNNs will always identically embed two vertices (graphs) when these
vertices (graphs) cannot be distinguished by the one-dimensional Weisfeiler-Leman (WL) algorithm.
Two graphs G1 and H1 and vertices v and w that cannot be distinguished by WL (and thus any
MPNN) are shown in Fig. 1. The expressive power of WL is well-understood [Cai et al., 1992, Dell
et al., 2018, Arvind et al., 2020] and basically can only use tree-based structural information in
the graphs to distinguish vertices. Hence, no MPNN can detect that vertex v in Fig. 1 is part of a
3-clique, whereas w is not. Similarly, MPNNs cannot detect that w is part of a 4-cycle, whereas v is
not. Further limitations of WL in terms of graph properties can be found, e.g., in Arvind et al. [2020],
Chen et al. [2020] and Tahmasebi and Jegelka [2020].

To remedy the weak expressive power of MPNNs, so-called higher-order MPNNs were proposed
[Maron et al., 2019a, Morris et al., 2019, 2020], whose expressive power is well-understood and

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

47/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Experimental Results

48/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Insights?

• By adding homcounts to the node labels before message passing, we get an
architecture that is at least as expressive as message passing

• Cycle counting seems to be important ;)

48/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Insights?

• By adding homcounts to the node labels before message passing, we get an
architecture that is at least as expressive as message passing
• Cycle counting seems to be important ;)

GNNs can Count Homomorphisms – Implicitly

50/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Practical problem

• 1-WL is sometimes not
expressive enough

• In particular, it is insensitive to
the number of cycles
• 2-FWL is already impractical

50/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Practical problem

• 1-WL is sometimes not
expressive enough
• In particular, it is insensitive to

the number of cycles

• 2-FWL is already impractical

50/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Practical problem

• 1-WL is sometimes not
expressive enough
• In particular, it is insensitive to

the number of cycles
• 2-FWL is already impractical

51/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Weisfeiler and Leman Go Loopy: A New Hierarchy for

Graph Representational Learning

NeurIPS 2024 (oral)

Raffaele Paolino*, Sohir Maskey*, Pascal Welke, and Gitta Kutyniok

52/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

At a glance

?
• Property prediction for small

molecules is one main
application area of GNNs

• Number and type of cycles in
molecules is important
• But

• we propose a generalized
message passing architecture
• it can distinguish graphs with

different r-cycle counts
• it can homomorphism-count all
r-cactus graphs (strictly more
expressive than 1-WL)
• fast in practice, s.o.t.a. results

52/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

At a glance

?
• Property prediction for small

molecules is one main
application area of GNNs
• Number and type of cycles in

molecules is important

• But

• we propose a generalized
message passing architecture
• it can distinguish graphs with

different r-cycle counts
• it can homomorphism-count all
r-cactus graphs (strictly more
expressive than 1-WL)
• fast in practice, s.o.t.a. results

52/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

At a glance

?
• Property prediction for small

molecules is one main
application area of GNNs
• Number and type of cycles in

molecules is important
• But

• we propose a generalized
message passing architecture
• it can distinguish graphs with

different r-cycle counts
• it can homomorphism-count all
r-cactus graphs (strictly more
expressive than 1-WL)
• fast in practice, s.o.t.a. results

52/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

At a glance

?
• Property prediction for small

molecules is one main
application area of GNNs
• Number and type of cycles in

molecules is important
• But

!
• we propose a generalized

message passing architecture

• it can distinguish graphs with
different r-cycle counts
• it can homomorphism-count all
r-cactus graphs (strictly more
expressive than 1-WL)
• fast in practice, s.o.t.a. results

52/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

At a glance

?
• Property prediction for small

molecules is one main
application area of GNNs
• Number and type of cycles in

molecules is important
• But

!
• we propose a generalized

message passing architecture
• it can distinguish graphs with

different r-cycle counts

• it can homomorphism-count all
r-cactus graphs (strictly more
expressive than 1-WL)
• fast in practice, s.o.t.a. results

52/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

At a glance

?
• Property prediction for small

molecules is one main
application area of GNNs
• Number and type of cycles in

molecules is important
• But

!
• we propose a generalized

message passing architecture
• it can distinguish graphs with

different r-cycle counts
• it can homomorphism-count all
r-cactus graphs (strictly more
expressive than 1-WL)

• fast in practice, s.o.t.a. results

52/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

At a glance

?
• Property prediction for small

molecules is one main
application area of GNNs
• Number and type of cycles in

molecules is important
• But

!
• we propose a generalized

message passing architecture
• it can distinguish graphs with

different r-cycle counts
• it can homomorphism-count all
r-cactus graphs (strictly more
expressive than 1-WL)
• fast in practice, s.o.t.a. results

53/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Contributions

A novel GNN architecture that is
parametrized by cycle length r that

• is efficient on sparse graphs
• can subgraph count all cycles of

length up to r
• can homomorphism count all
r-cactus graphs

53/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Contributions

A novel GNN architecture that is
parametrized by cycle length r that
• is efficient on sparse graphs

• can subgraph count all cycles of
length up to r
• can homomorphism count all
r-cactus graphs

53/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Contributions

A novel GNN architecture that is
parametrized by cycle length r that
• is efficient on sparse graphs
• can subgraph count all cycles of

length up to r

• can homomorphism count all
r-cactus graphs

53/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Contributions

A novel GNN architecture that is
parametrized by cycle length r that
• is efficient on sparse graphs
• can subgraph count all cycles of

length up to r
• can homomorphism count all
r-cactus graphs

54/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

A glimpse at the implementation

• Generalized message passing
over multiple sets of local
“neighborhoods”

• Cycles can be enumerated
quickly on many sparse graphs
Horváth et al (2004)

• Cycle representations can be
computed with GINs

54/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

A glimpse at the implementation

• Generalized message passing
over multiple sets of local
“neighborhoods”

• Cycles can be enumerated
quickly on many sparse graphs
Horváth et al (2004)

• Cycle representations can be
computed with GINs

54/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

A glimpse at the implementation

• Generalized message passing
over multiple sets of local
“neighborhoods”

• Cycles can be enumerated
quickly on many sparse graphs
Horváth et al (2004)

• Cycle representations can be
computed with GINs

54/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

A glimpse at the implementation

• Generalized message passing
over multiple sets of local
“neighborhoods”

• Cycles can be enumerated
quickly on many sparse graphs
Horváth et al (2004)

• Cycle representations can be
computed with GINs

54/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

A glimpse at the implementation

• Generalized message passing
over multiple sets of local
“neighborhoods”

• Cycles can be enumerated
quickly on many sparse graphs
Horváth et al (2004)

• Cycle representations can be
computed with GINs

54/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

A glimpse at the implementation

• Generalized message passing
over multiple sets of local
“neighborhoods”
• Cycles can be enumerated

quickly on many sparse graphs
Horváth et al (2004)

• Cycle representations can be
computed with GINs

54/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

A glimpse at the implementation

• Generalized message passing
over multiple sets of local
“neighborhoods”
• Cycles can be enumerated

quickly on many sparse graphs
Horváth et al (2004)

• Cycle representations can be
computed with GINs

54/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

A glimpse at the implementation

• Generalized message passing
over multiple sets of local
“neighborhoods”
• Cycles can be enumerated

quickly on many sparse graphs
Horváth et al (2004)

• Cycle representations can be
computed with GINs

55/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Empirical results

55/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Empirical results

56/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Open questions

We have seen different hierarchies of expressiveness

– increasing the size of F in NT and Maehara (2020)

– Barceló et al (2021) s F-WL hierarchy
– the r-loopy WL test of NeurIPS 2024

How are they connected?
Can we collect most of our results in one architecture?

56/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Open questions

We have seen different hierarchies of expressiveness
– increasing the size of F in NT and Maehara (2020)

– Barceló et al (2021) s F-WL hierarchy
– the r-loopy WL test of NeurIPS 2024

How are they connected?
Can we collect most of our results in one architecture?

56/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Open questions

We have seen different hierarchies of expressiveness
– increasing the size of F in NT and Maehara (2020)

– Barceló et al (2021) s F-WL hierarchy

– the r-loopy WL test of NeurIPS 2024

How are they connected?
Can we collect most of our results in one architecture?

56/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Open questions

We have seen different hierarchies of expressiveness
– increasing the size of F in NT and Maehara (2020)

– Barceló et al (2021) s F-WL hierarchy
– the r-loopy WL test of NeurIPS 2024

How are they connected?
Can we collect most of our results in one architecture?

56/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Open questions

We have seen different hierarchies of expressiveness
– increasing the size of F in NT and Maehara (2020)

– Barceló et al (2021) s F-WL hierarchy
– the r-loopy WL test of NeurIPS 2024

How are they connected?

Can we collect most of our results in one architecture?

56/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Open questions

We have seen different hierarchies of expressiveness
– increasing the size of F in NT and Maehara (2020)

– Barceló et al (2021) s F-WL hierarchy
– the r-loopy WL test of NeurIPS 2024

How are they connected?
Can we collect most of our results in one architecture?

57/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Deep Homomorphism Networks

G

1 2 3 L

⊕
MLP

· · ·

change the layers

• Message passing can be
generalized to homomorphism
counting

• We have to use a node-weighted
variant of homomorphisms,
though

Deep Homomorphism Networks

Takanori Maehara*

Roku, Inc.
Cambridge, UK

tmaehara@roku.com

Hoang NT
University of Tokyo

Tokyo, Japan
hoangnt@g.ecc.u-tokyo.ac.jp

Abstract

Many real-world graphs are large and have some characteristic subgraph patterns,
such as triangles in social networks, cliques in web graphs, and cycles in molecular
networks. Detecting such subgraph patterns is important in many applications;
therefore, establishing graph neural networks (GNNs) that can detect such patterns
and run fast on large graphs is demanding. In this study, we propose a new GNN
layer, named graph homomorphism layer. It enumerates local subgraph patterns
that match the predefined set of patterns P‚, applies non-linear transformations
to node features, and aggregates them along with the patterns. By stacking these
layers, we obtain a deep GNN model called deep homomorphism network (DHN).
The expressive power of the DHN is completely characterised by the set of patterns
generated from P‚ by graph-theoretic operations; hence, it serves as a useful
theoretical tool to analyse the expressive power of many GNN models. Furthermore,
the model runs in the same time complexity as the graph homomorphisms, which
is fast in many real-word graphs. Thus, it serves as a practical and lightweight
model that solves difficult problems using domain knowledge.

1 Introduction

1.1 Background

Graph neural network (GNN) is a type of neural network that takes a graph as input. It has been applied
to many problems in various domains, such as influence prediction in social networks [60], page
ranking in web graphs [65], and chemical prediction in biological networks [39]. See textbooks [46,
32, 71] for the basics of GNN.

The expressive power of GNNs is the central research topic in GNN [63, 75]. A recent interest in
this topic is the detectability of subgraph patterns. Many graphs that appear in practice have typical
subgraph patterns. For example, social networks have many triangles, which indicates the clustering
structure of the society. Web graphs have many cliques that represent clusters of websites, such as
link farms. Molecular networks have benzene structures. Since detecting these subgraph patterns is a
common strategy in network science [52] and graph data mining [15], we expect that GNNs applied
in these fields equip expressive power to detect such patterns. Furthermore, since the graphs in these
applications are typically large, we also expect that the GNNs applied in these fields run fast.

Unfortunately, most of the existing GNN models do not meet these expectations. The commonly used
GNNs, called message-passing GNNs (MPGNNs), do not meet the expectation of expressive power,
as they can only detect tree-shaped patterns [72, 19]. More complex GNNs can detect subgraph
patterns, but typically do not meet either expectation: Higher-order GNNs assign values to k-tuples
of nodes instead of nodes [53, 50, 36]. They have the same expressive power as the k-dimensional

*Authors are listed in alphabetical order.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

57/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Deep Homomorphism Networks

G

1 2 3 L

⊕
MLP

· · ·

change the layers

• Message passing can be
generalized to homomorphism
counting
• We have to use a node-weighted

variant of homomorphisms,
though

Deep Homomorphism Networks

Takanori Maehara*

Roku, Inc.
Cambridge, UK

tmaehara@roku.com

Hoang NT
University of Tokyo

Tokyo, Japan
hoangnt@g.ecc.u-tokyo.ac.jp

Abstract

Many real-world graphs are large and have some characteristic subgraph patterns,
such as triangles in social networks, cliques in web graphs, and cycles in molecular
networks. Detecting such subgraph patterns is important in many applications;
therefore, establishing graph neural networks (GNNs) that can detect such patterns
and run fast on large graphs is demanding. In this study, we propose a new GNN
layer, named graph homomorphism layer. It enumerates local subgraph patterns
that match the predefined set of patterns P‚, applies non-linear transformations
to node features, and aggregates them along with the patterns. By stacking these
layers, we obtain a deep GNN model called deep homomorphism network (DHN).
The expressive power of the DHN is completely characterised by the set of patterns
generated from P‚ by graph-theoretic operations; hence, it serves as a useful
theoretical tool to analyse the expressive power of many GNN models. Furthermore,
the model runs in the same time complexity as the graph homomorphisms, which
is fast in many real-word graphs. Thus, it serves as a practical and lightweight
model that solves difficult problems using domain knowledge.

1 Introduction

1.1 Background

Graph neural network (GNN) is a type of neural network that takes a graph as input. It has been applied
to many problems in various domains, such as influence prediction in social networks [60], page
ranking in web graphs [65], and chemical prediction in biological networks [39]. See textbooks [46,
32, 71] for the basics of GNN.

The expressive power of GNNs is the central research topic in GNN [63, 75]. A recent interest in
this topic is the detectability of subgraph patterns. Many graphs that appear in practice have typical
subgraph patterns. For example, social networks have many triangles, which indicates the clustering
structure of the society. Web graphs have many cliques that represent clusters of websites, such as
link farms. Molecular networks have benzene structures. Since detecting these subgraph patterns is a
common strategy in network science [52] and graph data mining [15], we expect that GNNs applied
in these fields equip expressive power to detect such patterns. Furthermore, since the graphs in these
applications are typically large, we also expect that the GNNs applied in these fields run fast.

Unfortunately, most of the existing GNN models do not meet these expectations. The commonly used
GNNs, called message-passing GNNs (MPGNNs), do not meet the expectation of expressive power,
as they can only detect tree-shaped patterns [72, 19]. More complex GNNs can detect subgraph
patterns, but typically do not meet either expectation: Higher-order GNNs assign values to k-tuples
of nodes instead of nodes [53, 50, 36]. They have the same expressive power as the k-dimensional

*Authors are listed in alphabetical order.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

58/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Deep Homomorphism Network Architecture

• Homomorphism counts can be
weighted by the node weights

• Node weights can be computed
by learnable functions
• Suitable pattern sets P allow to

obtain architectures as powerful
as our previous examples

58/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Deep Homomorphism Network Architecture

• Homomorphism counts can be
weighted by the node weights
• Node weights can be computed

by learnable functions

• Suitable pattern sets P allow to
obtain architectures as powerful
as our previous examples

58/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Deep Homomorphism Network Architecture

• Homomorphism counts can be
weighted by the node weights
• Node weights can be computed

by learnable functions
• Suitable pattern sets P allow to

obtain architectures as powerful
as our previous examples

Concluding Remarks

60/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Concluding Remarks

• Homomorphism-based methods work well in theory and practice
ICML 2023 NeurIPS 2024 ECML/PKDD 2018

• Randomization yields expressive graph representations

ICML 2023 KDD 2020 PhD thesis 2019

• There is much more...

– Generalization bounds of GNNs using homomorphism counts Li et al (2024)

– Intricate results linking homomorphism counting and the k-WL test Neuen (2024)

Lanzinger and Barceló (2024)

– Homomorphism bases (aka spasms) of patterns allow to compute and learn(!) very
powerful graph invariants Jin et al (2024) Dell et al (2018) Curticapean et al (2017)

60/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Concluding Remarks

• Homomorphism-based methods work well in theory and practice
ICML 2023 NeurIPS 2024 ECML/PKDD 2018

• Randomization yields expressive graph representations
ICML 2023 KDD 2020 PhD thesis 2019

• There is much more...

– Generalization bounds of GNNs using homomorphism counts Li et al (2024)

– Intricate results linking homomorphism counting and the k-WL test Neuen (2024)

Lanzinger and Barceló (2024)

– Homomorphism bases (aka spasms) of patterns allow to compute and learn(!) very
powerful graph invariants Jin et al (2024) Dell et al (2018) Curticapean et al (2017)

60/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Concluding Remarks

• Homomorphism-based methods work well in theory and practice
ICML 2023 NeurIPS 2024 ECML/PKDD 2018

• Randomization yields expressive graph representations
ICML 2023 KDD 2020 PhD thesis 2019

• There is much more...

– Generalization bounds of GNNs using homomorphism counts Li et al (2024)

– Intricate results linking homomorphism counting and the k-WL test Neuen (2024)

Lanzinger and Barceló (2024)

– Homomorphism bases (aka spasms) of patterns allow to compute and learn(!) very
powerful graph invariants Jin et al (2024) Dell et al (2018) Curticapean et al (2017)

60/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Concluding Remarks

• Homomorphism-based methods work well in theory and practice
ICML 2023 NeurIPS 2024 ECML/PKDD 2018

• Randomization yields expressive graph representations
ICML 2023 KDD 2020 PhD thesis 2019

• There is much more...
– Generalization bounds of GNNs using homomorphism counts Li et al (2024)

– Intricate results linking homomorphism counting and the k-WL test Neuen (2024)

Lanzinger and Barceló (2024)

– Homomorphism bases (aka spasms) of patterns allow to compute and learn(!) very
powerful graph invariants Jin et al (2024) Dell et al (2018) Curticapean et al (2017)

60/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Concluding Remarks

• Homomorphism-based methods work well in theory and practice
ICML 2023 NeurIPS 2024 ECML/PKDD 2018

• Randomization yields expressive graph representations
ICML 2023 KDD 2020 PhD thesis 2019

• There is much more...
– Generalization bounds of GNNs using homomorphism counts Li et al (2024)

– Intricate results linking homomorphism counting and the k-WL test Neuen (2024)

Lanzinger and Barceló (2024)

– Homomorphism bases (aka spasms) of patterns allow to compute and learn(!) very
powerful graph invariants Jin et al (2024) Dell et al (2018) Curticapean et al (2017)

60/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

Concluding Remarks

• Homomorphism-based methods work well in theory and practice
ICML 2023 NeurIPS 2024 ECML/PKDD 2018

• Randomization yields expressive graph representations
ICML 2023 KDD 2020 PhD thesis 2019

• There is much more...
– Generalization bounds of GNNs using homomorphism counts Li et al (2024)

– Intricate results linking homomorphism counting and the k-WL test Neuen (2024)

Lanzinger and Barceló (2024)

– Homomorphism bases (aka spasms) of patterns allow to compute and learn(!) very
powerful graph invariants Jin et al (2024) Dell et al (2018) Curticapean et al (2017)

61/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

References I
Pablo Barceló, Floris Geerts, Juan L Reutter, Maksimilian Ryschkov (2021) Graph neural networks with local graph parameters. In: Marc’Aurelio Ranzato,

Alina Beygelzimer, Yann N Dauphin, Percy Liang, Jennifer Wortman Vaughan (eds) Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp 25,280–25,293, URL
https://proceedings.neurips.cc/paper/2021/hash/d4d8d1ac7e00e9105775a6b660dd3cbb-Abstract.html

Paul Beaujean, Florian Sikora, Florian Yger (2021) Graph homomorphism features: Why not sample? In: Machine Learning and Principles and Practice
of Knowledge Discovery in Databases - International Workshops of ECML PKDD 2021, Virtual Event, September 13-17, 2021, Proceedings, Part I,
Springer, Communications in Computer and Information Science, vol 1524, pp 216–222, DOI 10.1007/978-3-030-93736-2_17, URL
https://doi.org/10.1007/978-3-030-93736-2_17

Andrei Dragos Brasoveanu, Fabian Jogl, Pascal Welke, Maximilian Thiessen (2023) Extending graph neural networks with global features. In: Learning
on Graphs Conference (LoG), URL https://openreview.net/forum?id=aisVQy6R2k

Radu Curticapean, Holger Dell, Dániel Marx (2017) Homomorphisms are a good basis for counting small subgraphs. In: Hamed Hatami, Pierre
McKenzie, Valerie King (eds) Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, ACM, pp 210–223, DOI 10.1145/3055399.3055502, URL https://doi.org/10.1145/3055399.3055502

Holger Dell, Martin Grohe, Gaurav Rattan (2018) Lovász meets weisfeiler and leman. In: Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx,
Donald Sannella (eds) 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech
Republic, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, LIPIcs, vol 107, pp 40:1–40:14, DOI 10.4230/LIPICS.ICALP.2018.40, URL
https://doi.org/10.4230/LIPIcs.ICALP.2018.40

Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu, Dominique Beaini (2022) Long range graph benchmark.
In: Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track, URL
https://openreview.net/forum?id=in7XC5RcjEn

https://proceedings.neurips.cc/paper/2021/hash/d4d8d1ac7e00e9105775a6b660dd3cbb-Abstract.html
http://dx.doi.org/10.1007/978-3-030-93736-2_17
https://doi.org/10.1007/978-3-030-93736-2_17
https://openreview.net/forum?id=aisVQy6R2k
http://dx.doi.org/10.1145/3055399.3055502
https://doi.org/10.1145/3055399.3055502
http://dx.doi.org/10.4230/LIPICS.ICALP.2018.40
https://doi.org/10.4230/LIPIcs.ICALP.2018.40
https://openreview.net/forum?id=in7XC5RcjEn

62/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

References II

Tamás Horváth, Thomas Gärtner, Stefan Wrobel (2004) Cyclic pattern kernels for predictive graph mining. In: Won Kim, Ron Kohavi, Johannes Gehrke,
William DuMouchel (eds) Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle,
Washington, USA, August 22-25, 2004, ACM, pp 158–167, DOI 10.1145/1014052.1014072

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, Jure Leskovec (2020) Open graph benchmark: Datasets
for machine learning on graphs. In: Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, URL
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html

Emily Jin, Michael M Bronstein, Ismail Ilkan Ceylan, Matthias Lanzinger (2024) Homomorphism counts for graph neural networks: All about that basis.
In: Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024, OpenReview.net, URL
https://openreview.net/forum?id=zRrzSLwNHQ

Matthias Lanzinger, Pablo Barceló (2024) On the power of the weisfeiler-leman test for graph motif parameters. In: The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024, OpenReview.net, URL
https://openreview.net/forum?id=FddFxi08J3

Shouheng Li, Floris Geerts, Dongwoo Kim, Qing Wang (2024) Towards bridging generalization and expressivity of graph neural networks. URL
https://arxiv.org/abs/2410.10051, 2410.10051

Tobias Mette (2023) Hops for homomorphism count estimation. BSc Thesis, University of Bonn
Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, Marion Neumann (2020) Tudataset: A collection of benchmark

datasets for learning with graphs. CoRR abs/2007.08663, URL https://arxiv.org/abs/2007.08663, 2007.08663

http://dx.doi.org/10.1145/1014052.1014072
https://proceedings.neurips.cc/paper/2020/hash/fb60d411a5c5b72b2e7d3527cfc84fd0-Abstract.html
https://openreview.net/forum?id=zRrzSLwNHQ
https://openreview.net/forum?id=FddFxi08J3
https://arxiv.org/abs/2410.10051
2410.10051
https://arxiv.org/abs/2007.08663
2007.08663

63/60Pascal Welke | Expressive Graph Embeddings via Homomorphism Counts

References III

Daniel Neuen (2024) Homomorphism-distinguishing closedness for graphs of bounded tree-width. In: Olaf Beyersdorff, Mamadou Moustapha Kanté,
Orna Kupferman, Daniel Lokshtanov (eds) 41st International Symposium on Theoretical Aspects of Computer Science, STACS 2024, March 12-14,
2024, Clermont-Ferrand, France, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, LIPIcs, vol 289, pp 53:1–53:12,
DOI 10.4230/LIPICS.STACS.2024.53, URL https://doi.org/10.4230/LIPIcs.STACS.2024.53

Hoang NT, Takanori Maehara (2020) Graph homomorphism convolution. In: Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, PMLR, Proceedings of Machine Learning Research, vol 119, pp 7306–7316, URL
http://proceedings.mlr.press/v119/nguyen20c.html

Raffaele Paolino*, Sohir Maskey*, Pascal Welke, Gitta Kutyniok (2024) Weisfeiler and leman go loopy: A new hierarchy for graph representational
learning. 2403.13749

Till Hendrik Schulz, Tamás Horváth, Pascal Welke, Stefan Wrobel (2018) Mining tree patterns with partially injective homomorphisms. In: Michele
Berlingerio, Francesco Bonchi, Thomas Gärtner, Neil Hurley, Georgiana Ifrim (eds) European Conference on Machine Learning and Knowledge
Discovery in Databases (ECMLPKDD), Springer, Lecture Notes in Computer Science, vol 11052, pp 585–601, DOI 10.1007/978-3-030-10928-8_35,
URL https://doi.org/10.1007/978-3-030-10928-8_35

Pascal Welke (2019) Efficient frequent subtree mining beyond forests. Dissertations in Artificial Intelligence 348, URL
https://hdl.handle.net/20.500.11811/7893

Pascal Welke, Florian Seiffarth, Michael Kamp, Stefan Wrobel (2020) HOPS: probabilistic subtree mining for small and large graphs. In: Rajesh Gupta,
Yan Liu, Jiliang Tang, B Aditya Prakash (eds) SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), ACM, pp 1275–1284,
DOI 10.1145/3394486.3403180, URL https://doi.org/10.1145/3394486.3403180

Pascal Welke*, Maximilian Thiessen*, Fabian Jogl, Thomas Gärtner (2023) Expectation-complete graph representations with homomorphisms. In:
International Conference on Machine Learning (ICML), URL https://proceedings.mlr.press/v202/welke23a.html, 2306.05838

http://dx.doi.org/10.4230/LIPICS.STACS.2024.53
https://doi.org/10.4230/LIPIcs.STACS.2024.53
http://proceedings.mlr.press/v119/nguyen20c.html
2403.13749
http://dx.doi.org/10.1007/978-3-030-10928-8_35
https://doi.org/10.1007/978-3-030-10928-8_35
https://hdl.handle.net/20.500.11811/7893
http://dx.doi.org/10.1145/3394486.3403180
https://doi.org/10.1145/3394486.3403180
https://proceedings.mlr.press/v202/welke23a.html
2306.05838

	Graph Representation Learning
	Message Passing and the Weisfeiler Leman Algorithm
	 Issues

	Homomorphism Counts as Graph Representations
	Homomorphism Counts as Node Representations
	GNNs can Count Homomorphisms – Implicitly
	Concluding Remarks
	References

