
Logic for declarative
problem-solving and its

applications
Gerhard Friedrich & Martin Gebser

Universität Klagenfurt
Austria

v230705.01

2

Structure
Part 1
• Why declarative problem

solving?
• Preliminaries / brush-ups
• Introduction to answer set

programming:
– Logic-based
– Expressive
– Efficient reasoning for

practical problems

Part 2
Answer set programming for
optimization and its application
• Traveling salesperson problem
• Linux package configuration
• Conclusion

3

Why declarative problem-solving?

• Solving problems with a computer

Problem

Computer Output

Solution

Representing

Generating

Interpreting

4

Why declarative problem-solving?

• Solving problems with a computer by programming

Problem

Program Output

Solution

Procedural programming

Executing

Interpreting

• A procedural program specifies “how to generate solutions”
• Solutions are generated by executing a program

5

Why declarative problem-solving?

• Solving problems with a computer by a declarative specification

Problem

Specification Output

Solution

Modeling

Solving

Interpreting

• A declarative program specifies “what are the solutions”
• Solutions are generated by a problem solver

6

Why declarative problem-solving?

• E.g., configuration of technical system aka automated engineering

© Siemens© Siemens© Dr. G Schmitz CC BY-SA 3.0

7

Why declarative problem-solving?

• Some insights of applying declarative problem-solving:

Maintenance cost: approx. 15% per year of initial development cost

0
2
4
6
8
10
12
14

In
iti
al 2 4 6 8 10 12 14 16 18 20 22 24

Total cost for configurator kernel Mio €
employing procedural programmingMio €

Years

8

Why declarative problem-solving?

0
2
4
6
8
10
12
14

In
iti
al 2 4 6 8 10 12 14 16 18 20 22 24

Total cost for configurator kernel Mio €
employing declarative programmingMio €

Years

• Reduction of initial development cost by 66%

• Reduction of yearly maintenance cost by 80%

• Productivity increase by 300% (no additional staff)

• ROI in 1 year for the telecommunication domain

• Enhanced user interaction:

• explanations,

• incremental configuration,

• repair …

9

Wanted

• General-purpose framework for modeling and solving problems

Design requirements
• “Expressive” to succinctly formulate maintainable specifications
• Optimization
• Rules and constraints
• Aggregation
• Dealing with the absence of information

Proposal
• Answer set programming (ASP) paradigm

10

Preliminaries / brush-ups

Propositional logic (syntax):

• Finite set of atoms (propositional symbols): e.g., {a1, a2, b, ..., name_of(4711,joe), age_of(4711,20), ...}

• Logic operators: “⋁”, “⋀”, “→”, “¬”, ...

• Literals are atoms and negated atoms: e.g., a, ¬a

• A clause is a set of literals connected by “⋁”: e.g., (¬b ⋁ a1 ⋁ c)

• Propositional theory: a finite set of clauses connected by “⋀”: e.g., (¬ a1 ⋁ a2) ⋀ b ⋀ (¬b ⋁ a1 ⋁ c)

11

Propositional logic (semantics)
• Let the base B of a propositional theory T be the set of atoms of T

• An interpretation I is a subset of a base B, i.e., I ⊆ B

• There are two truth values, i.e., true and false. An interpretation I associates either true or false
to all atoms of B, i.e., all atoms in I are true, all atoms in B ∖ I are false

• The logic operators (“⋁”, “⋀”, “→”, “¬”) are functions mapping truth values of their arguments to
a truth value: e.g., (true ⋀ false) ↦ false, ¬ true ↦ false. Operators have the usual definition

• Given an interpretation I the truth value of a proposition theory T can be determined by
recursively evaluating the logical operators, i.e., eval: { I } x { T } ↦ {true, false}

• An interpretation I is a model of a propositional theory T iff eval(I,T) = true

12

Example
• Propositional theory

T = (¬ a1 ⋁ a2) ⋀ b ⋀ (¬b ⋁ a1 ⋁ c)

• The base of T
B = {a1 , a2 , b , c}

• Interpretation {a1 , b } is not a model of T, because (¬ a1 ⋁ a2) is evaluated to false

• Interpretations {a1 , a2 ,b } and {b , c} are models of T, because all clauses of T are evaluated to true

13

Propositional logic programs

“a ← b” is equivalent to “a ⋁ ¬b”, hence clause c: a1 ⋁ ... ⋁ ak ⋁ ¬b1 ⋁ ... ⋁ ¬bm is equivalent to
 rule r: (a1 ⋁ ... ⋁ ak) ← (b1 ⋀ ... ⋀ bm) written in ASP as
 a1 | ... | ak :- b1 , ... , bm .
In answer set programming
• A propositional theory is called a (logic) program
• Clauses are rules . Rules are ended by “.”
• “a1 ⋁ ... ⋁ ak” is called the head of rule r
• “b1 ⋀ ... ⋀ bm” is called the body of rule r
• “⋀” corresponds to “,”
• “⋁” corresponds to “|”
• “←” corresponds to “:-”
• A rule “ai .” with exactly one atom in the head and no atoms in the body is called a fact
• A rule “← b1 ⋀ ... ⋀ bm.” with empty head is called a constraint

14

Acknowledgements

Reused and extended presentations of
• Thomas Eiter
• Martin Gebser
• Torsten Schaub

Recommended reading:
• Answer Set Solving in Practice by Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten

Schaub, University of Potsdam, Morgan & Claypool Publishers
• Answer Set Programming by Vladimir Lifschitz, University of Texas at Austin, Springer
• https://potassco.org

https://github.com/potassco/guide/releases/

https://potassco.org/
https://github.com/potassco/guide/releases/

15

Rules in ASP
Logic program P comprises a set of rules:

 a1 | a2 | · · · | ak :- b1, . . . , bm, not c1, . . . , not cn.

 e.g., head(X) | tail(X) :- coin(X), flippedCoin(X), not edge(X).

• ai bj cl are atoms

• “not” is called negation as failure (naf) or default-negation

• All-quantified logical variables are allowed, but first we focus on the propositional case

• Rules must be “safe” (required for transforming all-quantified rules to propositional logic)
– Roughly speaking, all variables in ai , cl must be contained in some bj (more details follow)

16

Rules in ASP
e.g., p(a,X) :- q(Y,1), k("a_string"), X = Y + 20, X > 30, not exception.

• Terms are constants, variables, arithmetic terms. For simplicity no functional terms
• Constants are

– symbolic constants (strings starting with some lowercase letter)
– string constants (quoted strings)
– integers

• Variables are strings starting with some uppercase letter. Variables are all-quantified
• Arithmetic terms have the form –(t) or (t ⋄ u) for terms t and u with ⋄ ∈ {“+”,“−”,“∗”,“/”}
• Classical atoms have the form p(t1,...,tq) where ti is a term and p is a predicate name, staring with

some lowercase letter
– p() with arity 0 is a classical atom. Parentheses can be dropped

• Built-in atoms have the form t ≺ u for terms t and u with ≺ ∈ {“<”, “≤”, “=”, “≠”, “>”, “≥”}
• Built-in atoms a as well as the expressions a and not a for a classical atom a are naf-literals
• Aggregate atoms will be defined later

17

Dinner example

• Wine bottles (brands) a, . . . ,e
• Plain ontology natively represented within the logic program
• Preference by facts

% A suite of wine bottles and their kinds
wineBottle(a). isA(a,whiteWine). isA(a,sweetWine).
wineBottle(b). isA(b,whiteWine). isA(b,dryWine).
wineBottle(c). isA(c,whiteWine). isA(c,dryWine).
wineBottle(d). isA(d,redWine). isA(d,dryWine).
wineBottle(e). isA(e,redWine). isA(e,sweetWine).

% Persons and their preferences
person(axel). preferredWine(axel,whiteWine).
person(gibbi). preferredWine(gibbi,redWine).
person(roman). preferredWine(roman,dryWine).

% Available bottles a person likes
compliantBottle(X,Z) :- preferredWine(X,Y), isA(Z,Y).

18

Default negation ≠ classic negation

“not a” is negation as failure (default negation)
• We assume assertion not a as true, if there is no reason to “believe” in a
• There are no unnecessary facts in the model. I.e., a is not a fact or cannot be deduced

Example:
compliantBottle(axel,a).
bottleChosen(a) :- not bottleSkipped(a),
 compliantBottle(axel, a).

bottleChosen(a) | bottleSkipped(a) :- compliantBottle(axel, a).

Preferred minimal model:

 M1 = { compliantBottle(axel,a), bottleChosen(a) }
 M2 = { compliantBottle(axel,a), bottleSkipped(a) }.

19

Programs with negation

Extension of example:

compliantBottle(axel,a).

bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).
bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).

Result ???

Problem: no single minimal model

Two alternatives:
• M1= { compliantBottle(axel,a), bottleChosen(a) },
• M2 = { compliantBottle(axel,a), bottleSkipped(a) }.
Which one to choose?

20

Social dinner example cont.

Extend the simple social dinner example:

% These rules generate multiple answer sets:
(1) bottleSkipped(X) :- not bottleChosen(X),

compliantBottle(Y,X).
(2) bottleChosen(X) :- not bottleSkipped(X),

compliantBottle(Y,X).
(3) hasBottleChosen(X) :- bottleChosen(Z), compliantBottle(X,Z).

• Rules (1) and (2) enforce that either bottleChosen(X)or bottleSkipped(X) is included in an
answer set (but not both), if it contains compliantBottle(Y,X)

• Rule (3) computes which persons have a bottle

21

Social dinner example cont.

% Alternatively, we could use disjunction:

(4) bottleSkipped(X) | bottleChosen(X) :- compliantBottle(Y,X).

(3) hasBottleChosen(X) :- bottleChosen(Z), compliantBottle(X,Z).

• Rules (1) and (2) enforce that either bottleChosen(X) or bottleSkipped(X) is included in an
answer set (but not both), if it contains compliantBottle(Y,X)

• Rule (3) computes which persons have a bottle
• Rule (4) (disjunction!) can be used for replacing (1)-(2), more in the appendix

22

Answer Set Semantics

• Variable-free, non-disjunctive programs first!

• Normal Rules

a:- b1, . . . , bm, not c1, . . . , not cn

where all a, bi , cj are atoms

• A normal logic program P is a (finite) set of such rules

• HB(P) (Herbrand Base) is the set of all atoms with predicates and constants from P

23

Example

compliantBottle(axel,a).
wineBottle(a).
bottleSkipped(a) :- not bottleChosen(a), compliantBottle(axel,a).
bottleChosen(a) :- not bottleSkipped(a), compliantBottle(axel,a).
hasBottleChosen(axel) :- bottleChosen(a), compliantBottle(axel,a).

• HB(P) = {
wineBottle(a), wineBottle(axel),

 bottleSkipped(a), bottleSkipped(axel),
 bottleChosen(a), bottleChosen(axel),
 hasBottleChosen(a), hasBottleChosen(axel),
 compliantBottle(axel,a), compliantBottle(axel,axel),
 compliantBottle(a,a), compliantBottle(a,axel) }

24

Answer sets

Let
• P be a normal logic program
• M ⊆ HB(P) be a set of atoms

Gelfond-Lifschitz (GL) Reduct PM

The reduct PM is obtained as follows (based on “guessed” M):

� remove from P each rule

 a:- b1, . . . , bm, not c1, . . . , not cn where some ci is in M

� remove all literals of form not ci from all remaining rules

25

Answer sets

• The reduct PM is a Horn program (clauses with at most one positive literal, i.e., facts and rules where the
head may be empty)

• It has the least model lm(PM). There exists at most one minimal model

Definition:
M ⊆ HB(P) is an answer set of P if and only if M = lm(PM)

Intuition:

• M makes an assumption about what is true and what is false
• PM derives positive facts under the assumption for which atom not (·) is true as defined by M
• If the result is M, then the assumption of M is “stable”

26

Computation of lm(P)

The least model of a not-free program can be computed by fixpoint iteration

Algorithm Compute_LM(P)
Input: Horn program P;
Output: lm(P)

new_M := ∅;
repeat

M := new_M;
new_M := {a | “a:-b1, . . . , bm” ∈ P, {b1, . . . , bm} ⊆ M}

until new_M == M
return M

27

Examples 1

compliantBottle(axel,a).
wineBottle(a).
hasBottleChosen(axel) :- bottleChosen(a), compliantBottle(axel,a).

• P has no not (i.e., is Horn)
• thus, PM = P for every M
• the single answer set of P is

M = lm(P) = { wineBottle(a), compliantBottle(axel,a) }.

28

Examples 2
(1) compliantBottle(axel,a).

wineBottle(a).
(2) bottleSkipped(a) :- not bottleChosen(a), compliantBottle(axel,a).
(3) bottleChosen(a) :- not bottleSkipped(a), compliantBottle(axel,a).
(4) hasBottleChosen(axel) :- bottleChosen(a), compliantBottle(axel,a).

Take M = { wineBottle(a), compliantBottle(axel,a), bottleSkipped(a) }

• Rule (2) “survives” the reduction (delete not bottleChosen(a))
• Rule (3) is dropped (not bottleSkipped(a) is false)

lm(PM) = M, and thus M is an answer set

29

Examples 3
(1) compliantBottle(axel,a).

wineBottle(a).
(2) bottleSkipped(a) :- not bottleChosen(a), compliantBottle(axel,a).
(3) bottleChosen(a) :- not bottleSkipped(a), compliantBottle(axel,a).
(4) hasBottleChosen(axel) :- bottleChosen(a), compliantBottle(axel,a).

Take M = { wineBottle(a), compliantBottle(axel,a), bottleChosen(a), hasBottleChosen(axel) }

• Rule (2) is dropped
• Rule (3) “survives” the reduction (delete not bottleSkipped(a))

lm(PM) = M, and therefore M is another answer set

30

Examples 4
(1) compliantBottle(axel,a).

wineBottle(a).
(2) bottleSkipped(a) :- not bottleChosen(a), compliantBottle(axel,a).
(3) bottleChosen(a) :- not bottleSkipped(a), compliantBottle(axel,a).
(4) hasBottleChosen(axel) :- bottleChosen(a), compliantBottle(axel,a).

Take M = { wineBottle(a), compliantBottle(axel,a),
bottleChosen(a), bottleSkipped(a), hasBottleChosen(axel) }

• Rules (2) and (3) are dropped

lm(PM) = { wineBottle(a), compliantBottle(axel,a)} ≠ M

Thus, M is not an answer set

31

Examples 5
(1) compliantBottle(axel,a).

wineBottle(a).
(2) bottleSkipped(a) :- not bottleChosen(a), compliantBottle(axel,a).
(3) bottleChosen(a) :- not bottleSkipped(a), compliantBottle(axel,a).
(4) hasBottleChosen(axel) :- bottleChosen(a), compliantBottle(axel,a).

Take M = { wineBottle(a), compliantBottle(axel,a)}

• Rule (2) “survives” the reduction (delete not bottleChosen(a))
• Rule (3) “survives” the reduction (delete not bottleSkipped(a))

lm(PM) = { wineBottle(a), compliantBottle(axel,a), bottleSkipped(a), bottleChosen(a),
hasBottleChosen(axel) } ≠ M

Thus, M is not an answer set

32

Programs with variables

• Each rule is a shorthand for all its ground substitutions, i.e., replacements of variables with
ground terms (variable-free, e.g., constants)

• Assumption: number of answer sets and the size of models are finite
• Assured, e.g., by syntactic restrictions such as no function symbols
• For simplicity we limit ground terms to constants

E.g., “b(X) :- not s(X), c(Y,X).” with constants axel and a is a shorthand for:

b(a) :- not s(a), c(a,a).
b(a) :- not s(a), c(axel,a).

b(axel) :- not s(axel), c(axel,axel).
b(axel) :- not s(axel), c(a,axel).

33

Programs with variables

• The Herbrand base of program P, HB(P), consists of all ground (variable-free) atoms with predicates and
constant symbols from P

• The grounding of a rule r , Ground(r), consists of all rules obtained from r if each variable in r is replaced by
some ground term (over P, unless specified otherwise)

• The grounding of program P, is Ground(P) = ⋃r∈P Ground(r)

Definition:
M ⊆ HB(P) is an answer set of P if and only if M is an answer set of Ground(P)

34

Inconsistent programs

Program
p :- not p.

• This program has NO answer sets, both guesses { p } and { } are not answer sets
• Let P be a program and p be a new atom
• Adding

p :- not p.

to program P “kills” all answer sets of P

35

Constraints

• Adding
p :- q1,..., qm , not r1, ..., not rn, not p.

to P “kills” all answer sets of P that:

• contain q1,..., qm and

• do not contain r1,..., rn

• Abbreviation:

:- q1,..., qm , not r1,..., not rn.

• This is called a “constraint” (cf. integrity constraints in databases)
• A constraint is violated, if q1,..., qm , not r1,..., not rn is satisfied

36

Social dinner example (cont.)

Task
• Add a constraint in order to filter answer sets in which for some person no bottle is chosen

% This rule generates multiple answer sets:
(1) bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).
(2) bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

% Ensure that each person gets a bottle.
(3) hasBottleChosen(X) :- bottleChosen(Z), compliantBottle(X,Z).
(4) :- person(X), not hasBottleChosen(X).

37

Main reasoning tasks

Consistency: decide whether a given program P has an answer set

Cautious (resp. brave) reasoning: given a program P and ground literals l1, . . . , ln
decide whether l1, . . . , ln simultaneously hold in every (resp., some) answer set of P

Query answering: Given a program P and non-ground atom a on variables X1, . . ., Xk ,
list all assignments of values v to X1, . . . , Xk such that substituting the variables in a with v is
cautiously resp. bravely true

• Seamless integration of query language and rule language

Answer Set Computation: compute some / all answer sets of a given program P

38

Properties of Answer Sets

Minimality:
Each answer set M of P is a minimal model (w.r.t ⊆)

Generalization of stratified semantics:
If negation in a normal logic program P (no disjunction) is layered (“P is stratified”),
then P has a unique answer set, which coincides with the perfect model

NP-Completeness:
Deciding whether a normal propositional program P has an answer set is NP-complete in general
⇒ Answer Set Semantics is an expressive formalism

• Higher expressiveness through further language constructs (disjunction, weak/weight constraints)
• Computational complexity is beyond NP

39

Answer set programming paradigm

General idea: Models are solutions
Reduce solving a problem instance I to computing models

� Encode I as a logic program P, such that solutions of I are represented by models of P
� Compute some model M of P, using an ASP solver
� Extract a solution for I from M

Variant: Compute multiple models (for multiple resp. all solutions)

40

ASP in practice

Uniform encoding:
Separate problem specification PS and input data D (usually, facts)

• Compact, easily maintainable representation: logic programs with constraints
• Integration of knowledge representation, databases, and search techniques

41

Architecture of ASP Solvers

Typically, a two-level architecture

1. Grounding Step
• Input: a program P with variables
• Generate a (subset of its) grounding which has the same models
• Output: a program P with no variables

The safety property of rules is exploited by grounding to compress the resulting propositional ASP program

42

Architecture of ASP Solvers /2

2. Model search
This is applied for ground programs

Techniques:
• Translations to SAT (propositional satisfiability)
• Special search procedures for ASP such as

– Conflict-driven answer set solving: From theory to practice, M. Gebser, B. Kaufmann, T. Schaub.
AI Journal 187-188 (2012), Elsevier

– Backtracking procedures for assigning truth value to atoms
– Similar to DPLL algorithm for SAT solving

• Important: Heuristics (which atom/rule to assign a truth value)

Exception: Lazy grounding (e.g., Alpha system) to save memory consumption

43

Answer Set Solvers

• Clingo https://potassco.org/clingo/
• Cmodels https://www.cs.utexas.edu/users/tag/cmodels/
• DLV https://dlv.demacs.unical.it/home
• Smodels http://www.tcs.hut.fi/Software/smodels/
• Alpha (lazy grounding) https://github.com/alpha-asp/Alpha#

(see https://en.wikipedia.org/wiki/Answer_set_programming for a more extensive list)

https://www.cs.utexas.edu/users/tag/cmodels/
https://dlv.demacs.unical.it/home
http://www.tcs.hut.fi/Software/smodels/
https://github.com/alpha-asp/Alpha
https://en.wikipedia.org/wiki/Answer_set_programming

44

Applications of ASP

• configuration
• scheduling
• routing
• diagnosis
• security analysis
• computer-aided verification
• . . .

45

Extensions of ASP

• Many extensions of normal logic programs have been proposed such as
– Weak constraints
– Aggregation
– Disjunction

• Some of these extensions are motivated by applications

• Some of these extensions are syntactic sugar, other strictly add expressiveness

46

Weak constraints
:~ q1,..., qm , not r1, ..., not rn. [Weight@Level, t1,...,tk]

Syntax:
• Weight and Level are integers or variables bound in q1,..., qm
• t1,...,tk are terms, e.g., constants or variables bound in q1,..., qm
• @Level may be omitted. In this case Level = 0. t1,...,tk may be omitted
Semantics:
• Let PRIOS be the set of all Weight@Level, t1,...,tk elements of weak constraints in a ground

program P and an answer set A of P, where q1,..., qm , not r1, ..., not rn is satisfied in A
• Note, all elements in PRIOS are ground. PRIOS is a set. Duplicates are removed
• The answer sets of program P are those answer sets of P which

minimize the sum of the weights of the violated weak constraints
• Minimize the violation of high-level constraints first
• Weak constraints provide means for optimizing objective functions

47

Weak constraints – Examples
a :- not b. b :- not a. c :- b.
:~ a. [1@0,1]
:~ b. [1@0,1]
:~ c. [1@0,1]

Optimal answer sets: {a}, {b,c} with sum of weights 1 at level 0

a :- not b. b :- not a. c :- b. d :- b.
:~ a. [3,a]
:~ b. [1,b]
:~ c. [1,cd]
:~ d. [1,cd]

Optimal answer set: {b,c,d} with sum of weights 2 at level 0

48

Aggregate atoms

Aggregation allows to express properties over a set of literals that are true in a model

Example: Given a set of facts defining prices of wines, find the price of the most expensive one

 costs(a,1). costs(b,7). costs(c,5). costs(d,2). costs(e,5).

 expensiveWine(Y) :- Y = #max{C : costs(W,C)}.
 % grounded and evaluated to

 expensiveWine(7) :- 7 = #max{1:costs(a,1); 7:costs(b,7); 5:costs(c,5);
 2:costs(d,2); 5:costs(e,5)}.

• Y = #max{C : costs(W,C)} is an aggregate atom
• #max is a build-in aggregate function defined over

– {C : costs(W,C)} a collection of aggregate elements
– C : costs(W,C) is an aggregate element

49

Aggregate atoms

Aggregate atoms: u1≺1 #aggr E ≺2 u2 (either u1≺1 or ≺2 u2 may be omitted)

• u1 and u2 are terms (i.e., variables or integers)
• Aggregate relation: ≺ ∈ {“<”,“≤”,“=”,“≠”,“>”,“≥”}
• Aggregate function: #aggr ∈ {“#count”, “#sum”, “#max”, “#min”}
• E is a collection of aggregate elements separated by “;”

Aggregate element: t1,...,tm:l1,...,ln

• t1,...,tm are terms (e.g., variables or constants)
• l1,...,ln are naf-literals (atom ai or not ai)
• Aggregate elements are instantiated during grounding

50

Satisfaction of aggregate atoms
E.g., aggregate atom: #sum{C,W : costs(W,C)} = Y
Aggregate element (E): C,W : costs(W,C)
Facts: costs(c,5). costs(e,5).
Interpretation I = {costs(c,5), costs(e,5)}
Instantiation of E: E ={5,c:costs(c,5); 5,e:costs(e,5)}

– Given a collection E of aggregate elements and an interpretation I ⊆ HB(P) of program P
– eval(E,I) = {(t1,...,tm) | t1,...,tm : l1,...,ln occurs in E and l1,...,ln are true with respect to I}

E.g., evaluation of E w.r.t. I: eval(E,I) = {(5,c), (5,e)}

– Aggregate atom #aggr E ≺ u is true (or false) with respect to I if #aggr(eval(E,I)) ≺ u is true
(or false) with respect to I

– #aggr is applied on the first elements of the the tuples in eval(E,I)

E.g., application of aggregate function: #sum({(5,c), (5,e)})=10

51

Satisfaction of aggregate atoms

Notes:

• Truth of u ≺ #aggr E is analogy defined
• The aggregate function #aggr is applied on the set provided by eval(E,I)
• Duplicates are removed!

52

Examples
costs(a,1). costs(b,7). costs(c,5). costs(d,2). costs(e,5).

expensiveWine(Y):- #max{C : costs(W,C)} = Y.

Instantiation of aggregate element “C : costs(W,C)”:
• {1:costs(a,1); 7:costs(b,7) ; 5:costs(c,5) ; 2:costs(d,2) ; 5:costs(e,5)}

Evaluation of instantiated aggregate element is
• {(1), (7), (5), (2), (5) }

Application of #max on evaluation result provides 7

• expensiveWine(7)is true

53

Examples of aggregate atoms

q :- 0 <= #count{X,Y : a(X,Z,k),b(1,Z,Y)} <= 3.

 q(Z) :- 2 < #sum{V : d(V,Z)}, c(Z).

 p(W) :- #min{S : c(S); T: d(T)} = W.

 :- #max{V : d(V,Z)} > G, c(G).

54

Safety

• Let a1 | a2 | · · · | ak :- b1, . . . , bn be a rule r where b1, . . . , bn are naf-literals
• A variable is global in a rule or weak constraint r, if it appears outside of aggregate elements in r
• For a set V of variables and literals b1,...,bn, v ∈ V is bound by b1,...,bn

if v occurs outside of arithmetic terms in some bi for 1≤i≤n such that bi is
– a classical atom, i.e., bi is not negated, no built-in atom and no aggregate atom, or
– a built-in atom t=v or v=t, and any member of V occurring in t is bound by {b1,...,bn}\bi

(e.g., t can be an arithmetic term, a constant or a variable) or
– an aggregate atom #aggr E = v, and any member of V occurring in E is bound by {b1,...,bn}\bi

• The entire set V of variables is bound by b1,...,bn if each v ∈ V is bound by b1,...,bn

• A rule or weak constraint r is safe if the set V of global variables in r is bound by b1,...,bn, and for each
aggregate element t1,...,tq : l1,...,lm in r with occurring variable set W, the set W \V of local variables is
bound by l1,...,lm

55

Examples
Safe rules and constraints
• a(X) :- node(X), #count{V : edge(V,X)} > 0.
• a(X) :- node(X), not #count{V : edge(V,X)} = 0.
• a(X) :- #count{V : node(V), succ(V,Z), not node(Z)} = X.
• :- #count{V : edge(V,Y), not edge(Y,V)} = X, X > 2.
• :- not node(X), #count{V : edge(V,Y)} = X.

Unsafe rules and constraints
• a(X) :- not node(X), #count{V : edge(V,X)} > 0.
• a(X) :- node(X), #count{V : edge(V,X)} > Z.

• a(X) :- node(X), #count{V : edge(V,X), not edge(V,Y)} > 0.
• a(X) :- #count{V : node(V), not edge(V,Y), Y=V+Z} > 0.
• :- #count{V : edge(V,Y), not edge(Y,X)} > 0, X > 2.
• :- #count{V : edge(V,Y)} > 0, X > Y.
• :- not node(X), #count{V : edge(V,Y)} > X.

56

Clingo

(one of the) most efficient ground-and-solve
ASP systems

57

Various special language constructs

Conditional Literals:

Given r(a), r(b), r(c) as facts

• p :- q(X) : r(X). stands for

• p :- q(a), q(b), q(c).

Choice rules:

• 2 {p(X,Y) : q(X)} 7 :- r(Y).

58

Conditional literals
Form of conditional literals:

A0 : A1 , ... , An where Ai is a literal and may contain variables

• Instantiate the “head literal” A0 where the instantiations of the condition A1 , ... , An is true

• The predicates of literals on the right-hand side of a colon (:) are usually defined from facts

without any negative recursion, i.e., these facts can be fully evaluated by the grounder

• A conditional literal is terminated by “;” when further literals in the rule body follow

59

Conditional literals
Example

person(jane). important(jan). available(jane).
person(john). important(john). available(john).
person(sam).

schedule.

meet :- available(X) : person(X), important(X);schedule.

% rule for meet is grounded to

meet :- available(jane), available(john), schedule.

60

Choice rules

By choice rules, we choose a subset of classical atoms of the head:

{A1 ; … ; Am} :- Am+1, … , An, not An+1, … , not Aq.

• A1 ; … ; Am are classical atoms or conditional literals where the head is a classical atom
• If body is satisfied in an answer set

 then any subset of {A1 ; … ; Am} can be included in the answer set
• This behavior can be implemented by generating new symbols and rules

Example: {a} :- b. b.
 has two answer sets, i.e. ,
 {b} and
 {a,b}

61

Choice rules with restrictions

We can add optionally lower and upper bounds or restrictions to choice rules:

u1≺1 {A1 ; … ; Am} ≺2 u2 :- Am+1, … , An, not An+1, … , not Aq.

• Aggregate relation: ≺ ∈ {“<”,“≤”,“=”,“≠”,“>”,“≥”} , if omitted then “≤” is applied
• u1 and u2 are terms (i.e., variables or integers)
• If body is satisfied in an answer set, then any subset of {A1 ; … ; Am} can be included in the answer

set but the restrictions on the cardinality of the subset must be satisfied

This behavior can be implemented by generating new symbols, rules, and aggregate constraints

62

Choice rules
Example

c(2).
d(a).d(b).

1{a(Y):d(Y);b(Z):d(Z)} < X:- c(X).

Answer: 1
b(b)
Answer: 2
a(a)
Answer: 3
a(b)
Answer: 4
b(a)

63

Application: Partner Unit Problem

Subproblem of configuring railway safety systems

© Siemens© Dr. G Schmitz CC BY-SA 3.0

64

Partner Unit Problem

If zone Z is connected to sensor S then
 Z is connected to a unit U and S is connected to this unit U or
 Z is connected to a unit U1 and S is connected to a different unit U2
 and U1 is connected to U2.

64

zone unit sensor

zone2sensor

unit2zone unit2sensor

unit2unit

1..1 1..10..2 0..2

0..n 0..n

1..* 1..*

n .. fixed natural number, e.g., 2

65

PUP in Clingo

% Facts (CUSTOMER REQUIREMENTS)

zone2sensor(z1,s1).
zone2sensor(z1,s2).
zone2sensor(z1,s3).
zone2sensor(z2,s3).
zone2sensor(z2,s4).

#const lower=2.
#const upper=4.
#const maxPU=2.

66

PUP in Clingo

% Rules (CONFIGURATION REQUIREMENTS)

comUnit(1..upper).

zone(Z) :- zone2sensor(Z,S).
sensor(S) :- zone2sensor(Z,S).

1 { unit2zone(U,Z) : comUnit(U)} 1 :- zone(Z).
:- comUnit(U), 3 <= #count { Z: unit2zone(U,Z)}.

1 { unit2sensor(U,S) : comUnit(U)} 1 :- sensor(S).
:- comUnit(U), 3 <= #count { S : unit2sensor(U,S)}.

67

PUP in Clingo

partnerunits(U,P):- zone2sensor(Z,S), unit2zone(U,Z), unit2sensor(P,S), U!=P.

partnerunits(U,P):- partnerunits(P,U).

:- comUnit(U), maxPU < #count { U : partnerunits(U,P)}.

% OPTIMIZATION

unitUsed(U):- unit2zone(U,Z).
unitUsed(U):- unit2sensor(U,S).
:~ unitUsed(U). [1,U]

68

PUP in Clingo

% SOME TUNING

lower{unitUsed(U): comUnit(U)}upper.
:- unitUsed(U), 1 < U, not unitUsed(U-1).

% SOLUTION SCHEMA

#show unit2zone/2.
#show unit2sensor/2.
#show partnerunits/2.
#show unitUsed/1.

69

PUP in Clingo

% SOLUTION

unitUsed(1) unitUsed(2)

unit2zone(2,z1) unit2zone(1,z2)

unit2sensor(2,s1) unit2sensor(2,s4)
unit2sensor(1,s2) unit2sensor(1,s3)

partnerunits(1,2) partnerunits(2,1)

Optimization: 2

unit 1

unit 2

zone 2

zone 1

sensor 4

sensor 2

sensor 3

sensor 1

Input:
zone2sensor(z1,s1).
zone2sensor(z1,s2).
zone2sensor(z1,s3).
zone2sensor(z2,s3).
zone2sensor(z2,s4).

70

Wrap up

• Declarative problem solving is based on a declarative specification of correct solutions
• Declarative problem solving can dramatically reduce development and maintenance costs
• ASP solvers implement currently one of the most efficient and expressive knowledge

representation & reasoning frameworks for performing declarative problem solving

• ASP provides a decidable fragment of first-order logic including disjunction in the head of rules
extended by:

– Non-monotonic reasoning employing NAF, i.e., reasoning about the absence of information,
– Aggregation, an instance of second-order reasoning,
– Weak constraints, providing means for optimization

71

Appendix

72

Weak constraints – Example
employee(a). employee(b). employee(c).
employee(d). employee(e).

know(a,b). know(b,c). know(c,d). know(d,e).

same_skill(a,b).

married(c,d).

member(X,p1) :- employee(X), not member(X,p2).

member(X,p2) :- employee(X), not member(X,p1).

:~ member(X,P), member(Y,P), X != Y, not know(X,Y). [1@1,X,Y,P]
:~ member(X,P), member(Y,P), X != Y, married(X,Y). [1@2,X,Y,P]
:~ member(X,P), member(Y,P), X != Y, same_skill(X,Y). [1@2,X,Y,P]

73

Weak constraints – Example

Best answer set (only member atoms):
 { member(b,p1), member(c,p1),
 member(a,p2), member(d,p2), member(e,p2)}

Weight=0 at level 2, weight=6 at level 1
 not know(X,Y): (c,b), (a,d), (a,e), (d,a), (e,a), (e,d)

Sub optimal answer set (only member atoms):
 { member(b,p1), member(c,p1), member(e,p1),

 member(a,p2), member(d,p2)}

Weight=0 at level 2, weight=7 at level 1
 not know(X,Y): (b,e), (c,b), (c,e), (e,b), (e,c), (a,d), (d,a)

Note: there is a symmetric best model to first solution, e.g., exchange p1/p2

74

Semantics of logic programs with negation

Two approaches

Single intended model approach:

• Select a single model of all classical models

• Agreement for so-called “stratified programs”: Perfect model

Multiple preferred model approach:

• Select a subset of all classical models

• Different selection principles for non-stratified programs

75

Stratified negation

Intuition: For evaluating the body of a rule containing not r 〈t〉,
the value of the „negative“ atoms r〈t〉 should be known. Let 〈t〉 … (t1, … ,tn)

� Evaluate first r〈t〉
� if r〈t〉 is false, then not r〈t〉 is true,
� if r〈t〉 is true, then not r〈t〉 is false and rule is not applicable

Example:
compliantBottle(axel,a),
bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

Computed model
M = { compliantBottle(axel,a), bottleChosen(a) }.

76

Program layers

• Evaluate predicates bottom up in layers
• Methods works if there is no cyclic negation (layered negation)

Example:
L0: compliantBottle(axel,a). wineBottle(a). expensive(a).
L0: bottleSkipped(X) :- expensive(X), wineBottle(X).

L1: bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

Unique (preferred) model resulting by layered evaluation (“perfect model”):

M = {compliantBottle(axel,a), wineBottle(a),expensive(a), bottleSkipped(a)}

Note: semantics defined by a procedure (violates declarativity)

77

Multiple preferred models

Unstratified Negation makes layering ambiguous:

L0: compliantBottle(axel,a).
L?: bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).
L?: bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).

• Assign to a program (theory) not one but several intended models!
For instance: Answer sets!

• How to interpret these semantics? Answer set programming caters
for the following views:
� sceptical reasoning: only take entailed answers, i.e., true in all models
� brave reasoning: each model represents a different solution to the problem
� additionally: one can define to consider only a subset of preferred models

78

Disjunctive ASP

• The use of disjunction in rule heads is natural

man(X) | woman(X) :- person(X).

• ASP has thus been extended with disjunction

a1 | a2 | · · · | ak :- b1, . . . , bm, not c1, . . . , not cn .

• The interpretation of disjunction is “minimal”

• Disjunctive rules thus permit to encode choices

79

Social dinner example - disjunctive version

Replace the choice rules

bottleSkipped(X) :- not bottleChosen(X), compliantBottle(Y,X).
bottleChosen(X) :- not bottleSkipped(X), compliantBottle(Y,X).

with an equivalent (w.r.t. example) disjunctive rule

bottleSkipped(X) | bottleChosen(X) :- compliantBottle(Y,X).

• Very often, disjunction corresponds to such cyclic negation
• However, disjunction is more expressive in general, and cannot be efficiently eliminated

80

Answer sets of disjunctive programs

Define answer sets similar as for normal logic programs by Gelfond-Lifschitz Reduct PM

Extend PM to disjunctive programs:

� remove each rule in Ground(P) with some literal “not a” in the body if a ∈ M
� remove all literals “not a” from all remaining rules in Ground(P)

However, a single minimal model lm(PM) does not necessarily exist (multiple minimal models!)

Definition
M ⊆ HB(P) is an answer set of P if and only if M is a minimal (wrt. ⊆) model of PM

81

Example
(1) compliantBottle(axel,a).

wineBottle(a).
(2) bottleSkipped(a) | bottleChosen(a) :- compliantBottle(axel,a).
(3) hasBottleChosen(axel) :- bottleChosen(a), compliantBottle(axel,a).

This program contains no “not”, so PM = P for every M
Its answer sets are its minimal models:

• M1 = { wineBottle(a), compliantBottle(axel,a), bottleSkipped(a) }
• M2 = { wineBottle(a), compliantBottle(axel,a), bottleChosen(a), hasBottleChosen(axel) }

This is the same as in the non-disjunctive version

82

Implementation of choice rules

Choice rule

{A1 ; … ; Am} :- Am+1, … , An, not An+1, … , not Aq.

is translated into 2m+1 rules using new atoms A, A1’, … , Am’:

A:- Am+1, … , An, not An+1, … , not Aq. % Condition

A1 :- A, not A1’. A1’ :- not A1. % Choice
…
Am :- A, not Am’. Am’ :- not Am. % Choice

83

Cardinality constraints

A (positive) cardinality constraint is of the form

low {A1 ; … ; Am} up % low and up are positive integers, A1, … ,Am are classical atoms.

A cardinality constraint is satisfied in an answer set I
if the number of satisfied atoms of set {A1, … ,Am} in I is between low and up (inclusive)

Frequently, conditional literals are employed: low {A1:B1 ; … ; Am:Bm} up
where B1, … ,Bm are used to restrict the instantiations of variables occurring in A1 ; … ; Am

Example:
2{a(X):b(X)}4.
b(r). b(s). b(t). b(u). b(v).

84

Cardinality rules

Are employed to control the cardinality of subsets

A0 :- low {A1 ; ... ; Am ; not Am+1 ; ... ; not An}.

Informal meaning:
• If at least low elements of low {A1 ; ... ; Am ; not Am+1 ; ... ; not An} are true in an interpretation,

then add A0 to this interpretation
• low is a lower bound on the truth assignments in the body

Example:
 a :- 1{b; c}. b.

 has one answer set: {a, b}

85

Cardinality rules with bounds

A rule of the form

 A0 :- low {A1 ; ... ; Am ; not Am+1 ; ... ; not An} up.

corresponds to

 A0 :- B, not C.

 B :- low {A1, ... ,Am, not Am+1, ... , not An}.

 C :- up+1 {A1, ... ,Am, not Am+1, ... , not An}.

86

Cardinality constraints in the head

A rule of the form

 low {A1 ; … ; Am} up :- Am+1, … , An, not An+1, … , not Aq.

corresponds to

 B :- Am+1, … , An, not An+1, … , not Aq.
 {A1 ; … ; Am} :- B.
 C :- low {A1 ; … ; Am} up.
 :- B, not C.

