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Preface

Reinforcement learning is an appealing subject. Firstly, it is a very general
concept: an agent interacts with an environment with the goal to maximize
the rewards it receives from the environment. The environment is random
and provides states and rewards to the agent, while the agent chooses ac-
tions according to a possibly random policy. The goal is to find policies
that maximize the expected value of all future rewards. Because reinforce-
ment learning is such a general concept, it encompasses many real-world
applications of machine learning and artificial intelligence.

Secondly, it is very likely that the concepts and algorithms developed
in reinforcement learning lead to more general artificial intelligences or will
be part of a general artificial intelligence. There are also similarities be-
tween reinforcement learning and how (human) brains work that are worth
exploring in order to further our understanding of (human) brains.

Thirdly, the superhuman capabilities of reinforcement-learning algorithms
have been demonstrated in various areas, and the list of superhuman capa-
bilities achieved in this manner is continually expanding.

This book derives and describes the most fundamental and the most pow-
erful and useful reinforcement-learning algorithms. In addition to powerful
algorithms, guarantees regarding the quality of the output of the learn-
ing algorithms, i.e. the performance of the policies calculated by the al-
gorithms, must also be provided. The two main kinds of results concern
the convergence to an optimal policy and the reliability of the calculated
policies. Therefore this book also collects the theoretic foundations of rein-
forcement learning in view of these main questions, providing theorems and
their proofs.

To render the concepts and algorithms concrete and useful in applica-
tions, the book also includes exercises that are concerned with the imple-
mentation of algorithms in addition to theoretic exercises. The purpose of
the programming exercises is to gain working knowledge, to try to exhibit
both the advantages and disadvantages of certain methods, to show the chal-
lenges faced when developing new algorithms, and to inspire the reader to
experiment with the algorithms. Both theoretic and programming exercises
are an invitation to the reader to further explore this captivating subject.

Clearly, it was necessary to make choices – in many cases hard ones –
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about the algorithms, theorems, and proofs that could be included in this
book. Preference has been given to the more fundamental and general con-
cepts. In any case, a complete and self-contained treatment of the material
that is included is given. The more advanced theoretic parts are marked
with a star (*) and can be skipped on first reading. The appendix collects
definitions, concepts, and results from outside reinforcement learning in a
form that is expedient for use in this work. Depending on the background
of the reader, the appendix can be skipped in whole or in part.

This book can be used in various ways: it can be used for self-study, but
it can also be used as the basis of courses on reinforcement learning. I hope
that this book is useful to various audiences such as computer scientists
interested in artificial intelligence and machine learning, to theoreticians
interested in the derivation of algorithms and proofs, and to practitioners
interested in the inner workings of the algorithms and seeking assurance in
quality of the policies.

I hope that you have as much fun reading the book as I had writing it.

Vienna, July 2023 Clemens Heitzinger
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Chapter 1

Introduction

Here the basic concept of reinforcement learning and the fundamental no-
tions used in formulating problems in reinforcement learning are introduced.
Reinforcement learning is a very general concept and applies to time-dependent
learning problems whenever an agent interacts with its environment. The
main goal in reinforcement learning is to find optimal policies for the agent
to follow. Examples of applications of reinforcement learning are given.

1.1 The Concept of Reinforcement Learning
One of the major appeals of reinforcement learning is that it applies to all
situations where an agent interacts with an environment in a time-dependent
manner.

The basic concept is illustrated in Figure 1.1. Firstly, the environment
and the agent are possibly randomly initialized at the beginning of each
episode. In each new time step 𝑡 (which is increased in the top right in the
figure), the environment and the agent enter the next state 𝑆𝑡 and the agent
receives the reward 𝑅𝑡. Then the agent chooses the next action 𝐴𝑡 according
to its possibly random policy. In the next iteration, this action affects the
environment and the agent in a possibly random manner; the environment
and the agent enter the next state; the agent receives a reward; and so forth.

In this manner, sequences of states 𝑆𝑡, actions 𝐴𝑡, and rewards 𝑅𝑡 are
generated. These sequences may be infinite (at least theoretically) or they
end in a terminal state (which always happens in practice) after a finite
number of time steps. A collection of a sequence of states 𝑆𝑡, a sequence
of actions 𝐴𝑡, and a sequence of rewards 𝑅𝑡 is called an episode. It is
convenient to treat both cases, i.e., finite and infinite numbers of time steps,
within the same theoretical framework, which can be done under reasonable
assumptions.

The return is the expected value of the sum of all (discounted) rewards
the agent receives. We call a policy optimal if it maximizes the return.

1



Chapter 1. Introduction

Environment Next time step,
𝑡 ∶= 𝑡 + 1

State 𝑆𝑡,
reward 𝑅𝑡

Agent

Action 𝐴𝑡

Figure 1.1: Environments, agents, and their interactions.

The main goal in reinforcement learning is to find optimal policies for
the agent to follow. The input to a policy is the current state the agent finds
itself in. The output of a deterministic policy is the action to take, and –
more generally – the output of a random policy is a probability distribution
that assigns probabilities to all actions that are possible in the state. Hence
policies may be random, just as environments may be random.

It is necessary to allow random policies. An well-known example where
the optimal policy must be random is the game of Rock Paper Scissors
(Lizard Spock); if it were not random, it could easily be exploited by the
opponent.

Because the main goal in reinforcement learning is to find optimal poli-
cies, the main purpose of this book is to present and to discuss methods and
algorithms that calculate such optimal policies.

Because of its generality, the concept of reinforcement learning encom-
passes almost all real-world time-dependent problems whose solution re-
quires foresight or intelligence. Therefore, it is at the core of artificial in-
telligence. Any situation where an agent interacts with an environment
and tries to optimize the sum of its rewards is a problem in the realm of
reinforcement learning, irrespective of the cardinality of the sets of spaces
and actions and irrespective of whether the environment is deterministic or
stochastic.

Depending on the problem, some information may be hidden from the
agent. For example, in chess, there is no hidden information; the whole
state of the game is known to both players. On the other hand, in poker,
the agents do not have access to all the information and it is hence called a
hidden-information game. Therefore, there is observable and unobservable
information. In this book, the information that is observable by the agent

2



1.2. Examples of Applications

determines the state, i.e., unobservable information is not included in the
definition of the state.

If the discount factor is zero, reinforcement learning simplifies to super-
vised learning. In other words, reinforcement learning is a generalization of
supervised learning, which deals with problems that are not time-dependent.
There is also a relation between reinforcement learning and unsupervised
learning. In reinforcement learning, the initially unknown internal structure
of the environment is learned and exploited in order to maximize the return.
This is done implicitly, in contrast to unsupervised learning, whose goal is
to bring hidden structures to light.

1.2 Examples of Applications
Clearly, the more complicated or random the environment is, the more chal-
lenging the reinforcement-learning problem is. Thanks to advanced algo-
rithms and – in some cases – to gigantic amounts of computational resources,
it has become possible to solve real-world problems at the level of human
intelligence or above. Some applications are discussed the following.

1.2.1 Robotics

In robotics, the roboter interacts with its environment in order to solve
the task it has been assigned. In the ideal case, one defines the task for
the roboter by specifying the rewards and/or penalties, which are usually
straightforward to specify, and it learns to solve the problem without any
further help or interaction.

1.2.2 Supply Chains and Inventories

In supply-chain and inventory management, goods have to moved around
such that they arrive at their points of destination in sufficient quantity.
Moving and storing goods is costly, however. Rewards are given out when-
ever the goods arrive in the specified quantity at their points of destination,
while penalties are given out when there are too few or when they are de-
layed.

1.2.3 Optimal Control

Examples for the optimal control of industrial systems are chemical and
biological reactors. The output of the product is to be maximized, while the
reactions must occur within safe conditions.

3



Chapter 1. Introduction

1.2.4 Medicine
Similarly to the optimal control of systems, optimal policies for treating
patients can be calculated based on measurements of their physical condition
[1].

1.2.5 Computer Games
The study of computer games in the context of artificial intelligence dates
back at least to Falken’s Maze [2]. When playing computer games, the
computer game is the environment and the agent has to learn the optimal
strategy. The same algorithm can learn to play many (but not all) Atari 2600
games at the human level or above [3]. A few years later, a reinforcement-
learning algorithm learned to play Quake III Arena in Capture the Flag
mode at the human level [4].

1.2.6 Go
After chess, Go (Weiqi) was the only remaining classical board game where
humans could play better than computers. Go games lead to much larger
search spaces than chess, which is the reason why Go was the last unsolved
board game. In [5], a reinforcement-learning algorithm called AlphaGo Zero
learned to beat the best humans consistently using no prior knowledge apart
from the rules of the game, i.e., tabula rasa, albeit using vast computational
resources.

1.2.7 Chess, Shogi, and Go
In the next step, the more general reinforcement-learning algorithm called
AlphaZero in [6] learned to play the three games of chess, shogi (Japanese
chess), and Go again tabula rasa and using only self-play. It defeats world-
champion programs in each of the three games.

1.2.8 Autonomous Driving
In autonomous driving, the agent has to traverse a stochastic environment
quickly and safely. Sophisticated simulation environments including sensor
output already exist for autonomous driving [7].

1.3 Overview of Methods
Here a short overview of the methods presented in this book are given. When
reading the book first, many of the terms and notions will be unknown to the
reader and this overview will only serve as a rough guideline to the variety
of methods in reinforcement learning. The overview is meant to be useful
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on the second reading or when looking for a method particularly amenable
to a given problem, since each method comes with a table that indicates its
most important features and for which kind of problems it can be used.

1.3.1 Markov Decision Processes
Markov decision processes are, strictly speaking, not a solution method in
reinforcement learning, but they serve as the starting point and the theo-
retical framework for describing transitions between states. The notations
for states, actions, rewards, returns, etc. are fixed in Chapter 2 and used
throughout the book.

1.3.2 Dynamic Programming
Dynamic programming is, of course, a whole field by itself. In dynamic pro-
gramming, knowledge of the complete probability distributions of all possible
transitions is required; in other words, the environment must be completely
known. It can therefore be viewed as a special case of reinforcement learning,
as the environment may be completely unknown in reinforcement learning.

Because dynamic programming is an important special case, Chapter 2
provides a summary of the most important techniques of dynamic program-
ming at the beginning of the book. The following chapter, Chapter 3, reuses
some ideas, but relaxes the assumption on the what must be known about
the environment. For the types of problems indicated in Table 1.1, dynamic
programming is the state of the art.

Cardinality of the set of states: finite.
Cardinality of the set of actions: finite.
Must the environment be known? Yes, completely.
Function approximation for the policy? No.

Table 1.1: When dynamic programming can be used.

1.3.3 Monte-Carlo Methods

Cardinality of the set of states: finite.
Cardinality of the set of actions: finite.
Must the environment be known? No. A model to generate

sample transitions is useful.
Function approximation for the policy? No.

Table 1.2: When Monte-Carlo methods can be used.

5



Chapter 1. Introduction

1.4 Bibliographical and Historical Remarks
The most influential introductory text book on reinforcement learning is [8].
An excellent summary of the theory is [9].

1.5 Problems
Problem 1.1. Think of an application of reinforcement learning and de-
scribe what the states, actions, rewards, etc. are in your application.

6



Chapter 2

Markov Decision Processes
and Dynamic Programming

2.1 Introduction

2.2 Multi-armed Bandits
A relatively simple, but illustrative example of a reinforcement-learning
problem are multi-armed bandits. The name of the problem stems from
slot machines. There are 𝑘 = |𝒜| slot machines or bandits, and the action
is to choose one machine and play it to receive a reward. The reward each
slot machine or bandit distributes is taken from a stationary probability
distribution, which is of course unknown to the agent and different for each
machine.

In more abstract terms, the problem is to learn the best policy when
being repeatedly faced with a choice among 𝑘 different actions. After each
action, the reward is chosen from the stationary probability distribution
associated with each action. The objective of the agent is to maximize the
expected total reward over some time period or for all times.

In time step 𝑡, the action is denoted by 𝐴𝑡 ∈ 𝒜 and the reward by 𝑅𝑡.
In this example, we define the (true) value of an action 𝑎 to be

𝑞∗ ∶ 𝒜 → ℝ, 𝑞∗(𝑎) ∶= 𝔼[𝑅𝑡 ∣ 𝐴𝑡 = 𝑎], 𝑎 ∈ 𝒜.

(This definition is simpler than the general one, since the time steps are
independent from one another. There are no states.) This function is called
the action-value function.

Since the true value of the actions is unknown (at least in the beginning),
we calculate an approximation called 𝑄𝑡 ∶ 𝒜 → ℝ in each time step; it should
be as close to 𝑞∗ as possible. A reasonable approximation is the expected

7



Chapter 2. Markov Decision Processes and Dynamic Programming

value of the observed rewards, i.e.,

𝑄𝑡(𝑎) ∶=
sum of rewards obtained when action 𝑎 was taken prior to 𝑡

number of times action 𝑎 was taken prior to 𝑡 .

Based on this approximation, the greedy way to select an action is to choose
𝐴𝑡 ∶= argmax

𝑎
𝑄𝑡(𝑎),

which serves as a substitute for the ideal choice
argmax

𝑎
𝑞∗(𝑎).

In summary, these simple considerations have led us to a first example of an
action-value method. In general, an action-value method is a method which
is based on (an approximation 𝑄𝑡 of) the action-value function 𝑞∗.

Choosing the actions in a greedy manner is called exploitation. However,
there is a problem. In each time step, we only have the approximation 𝑄𝑡 at
our disposal. For some of the 𝑘 bandits or actions, it may be a bad approx-
imation, in the sense that it leads us to choose an action 𝑎 whose estimated
value 𝑄𝑡(𝑎) is higher than its true value 𝑞∗(𝑎). Such an approximation error
would be misleading and reduce or rewards.

In other words, exploitation by greedy actions is not enough. We also
have to ensure that our approximations are sufficiently accurate; this process
is called exploration. If we explore all actions sufficiently well, bad actions
cannot hide behind high rewards obtained by chance.

The duality between exploitation and exploration is fundamental to re-
inforcement learning, and it is worthwhile to always keep these two concepts
in mind. Here we saw how these two concepts are linked to the quality of
the approximation of the action-value function 𝑞∗.

In general, a greedy policy always exploits the current knowledge (in the
form of an approximation of the action-value function) in order to maximize
the immediate reward, but it spends no time on the long-term picture. A
greedy policy does not sample apparently worse actions to see whether their
true action values are better or whether they lead to more desirable states.
(Note that the multi-bandit problem is stateless.)

A common and simple way to combine exploitation and exploration into
one policy in the case of finite action sets is to choose the greedy action most
of the time, but any action with a (usually small) probability 𝜖. This is the
subject of the following definition.
Definition 2.1 (𝜖-greedy policy). Suppose that the action set 𝒜 is finite,
that 𝑄𝑡 is an approximation of the action-value function, and that 𝜖𝑡 ∈ [0, 1].
Then the policy defined by

𝐴𝑡 ∶= {argmax𝑎∈𝒜𝑄𝑡(𝑎) with probability 1 − 𝜖𝑡 breaking ties randomly,
a random action 𝑎 with probability 𝜖𝑡

8
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is called the 𝜖-greedy policy.

In the first case, it is important to break ties randomly, because otherwise
a bias towards certain actions would be introduced. The random action in
the second case is usually chosen uniformly from all actions 𝒜.

Learning methods that use 𝜖-greedy policies are called 𝜖-greedy methods.
Intuitively speaking, every action will be sampled an infinite number of times
as 𝑡 → ∞, which ensures convergence of 𝑄𝑡 to 𝑞∗.

Regarding the numerical implementation, it is clear that storing all pre-
vious actions and rewards becomes inefficient as the number of time steps
increases. Can memory and the computational effort per time step be kept
constant, which would be the ideal case? Yes, it is possible to achieve this
ideal case using a trick, which will lead to our first learning algorithm.

To simplify notation, we focus on the action-value function of a certain
action. We denote the reward received after the 𝑘-th selection of this specific
action by 𝑅𝑘 and use the approximation

𝑄𝑛 ∶= 1
𝑛 − 1

𝑛−1
∑
𝑘=1

𝑅𝑘

of its action value after the action has been chosen 𝑛−1 times. This is called
the sample-average method. The trick is to find a recursive formula for 𝑄𝑛
by calculating

𝑄𝑛+1 = 1
𝑛

𝑛
∑
𝑘=1

𝑅𝑘

= 1
𝑛 (𝑅𝑛 + (𝑛 − 1) 1

𝑛 − 1
𝑛−1
∑
𝑘=1

𝑅𝑘)

= 1
𝑛(𝑅𝑛 + (𝑛 − 1)𝑄𝑛)

= 𝑄𝑛 + 1
𝑛(𝑅𝑛 −𝑄𝑛) ∀𝑛 ≥ 1.

(If 𝑛 = 1, this formula holds for arbitrary values of 𝑄1 so that the starting
point 𝑄1 does not play a role.)

This yields our first learning algorithm, Algorithm 1. The implementa-
tion of this recursion requires only constant memory for 𝑛 and 𝑄𝑛 and a
constant amount of computation in each time step.

The recursion above has the form

new estimate ∶= old estimate+ learning rate ⋅ (target−old estimate), (2.1)

which is a common theme in reinforcement learning. Its intuitive meaning is
that the estimate is updated towards a target value. Since the environment

9
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Algorithm 1 a simple algorithm for the multi-bandit problem.
initialization:
choose 𝜖 ∈ (0, 1)
initialize two vectors 𝑞 and 𝑛 of length 𝑘 = |𝒜| with zeros

loop
select an action 𝑎 𝜖-greedily using 𝑞 (see Definition 2.1)
perform the action 𝑎 and receive the reward 𝑟 from the environment
𝑛[𝑎] ∶= 𝑛[𝑎] + 1
𝑞[𝑎] ∶= 𝑞[𝑎] + 1

𝑛[𝑎](𝑟 − 𝑞[𝑎])
end loop

return 𝑞

is stochastic, the learning rate only moves the estimate towards the observed
target value. Updates of this form will occur many times in this book.

In the most general case, the learning rate 𝛼 depends on the time step
and the action taken, i.e., 𝛼 = 𝛼𝑡(𝑎). In the sample-average method above,
the learning rate is 𝛼𝑛(𝑎) = 1/𝑛. It can be shown that the sample-average
approximation 𝑄𝑛 above converges to the true action-value function 𝑞∗ by
using the law of large numbers.

Sufficient conditions that yield convergence with probability one are
∞
∑
𝑘=1

𝛼𝑘(𝑎) = ∞, (2.2a)

∞
∑
𝑘=1

𝛼𝑘(𝑎)2 < ∞. (2.2b)

They are well-known in stochastic-approximation theory and are a recurring
theme in convergence proofs. The first condition ensures that the steps are
sufficiently large to eventually overcome any initial conditions or random
fluctuations. The second condition means the steps eventually become suf-
ficiently small. Of course, these two conditions are satisfied for the learning
rate

𝛼𝑡(𝑎) ∶=
1
𝑛,

but they are not satisfied for a constant learning rate 𝛼𝑡(𝑎) ∶= 𝛼. However,
a constant learning rate may be desirable when the environment is time-
dependent, since then the updates continue to adjust the policy to changes
in the environment.

Finally, we shortly discuss an important improvement over 𝜖-greedy poli-
cies, namely action selection by upper confidence bounds. The disadvantage
of an 𝜖-greedy policy is that it chooses the non-greedy actions without any
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further consideration. It is however better to select the non-greedy actions
according to their potential to actually being an optimal action and accord-
ing to the uncertainty in our estimate of the value function. This can be
done using the so-called upper-confidence-bound action selection

𝐴𝑡 ∶= argmax
𝑎∈𝒜

(𝑄𝑡(𝑎) + 𝑐√ ln 𝑡
𝑁𝑡(𝑎)

) ,

where 𝑁𝑡(𝑎) is the number of times that action 𝑎 has been selected before
time 𝑡. If 𝑁𝑡(𝑎) = 0, the action 𝑎 is treated as an optimal action. The
constant 𝑐 controls the amount of exploration.

The term √(ln 𝑡)/𝑁𝑡(𝑎) measures the uncertainty in the estimate 𝑄𝑡(𝑎).
When the action 𝑎 is selected, 𝑁𝑡(𝑎) increases and the uncertainty decreases.
On the other hand, if an action other than 𝑎 is chosen, 𝑡 increases and the
uncertainty relative to other actions increases. Therefore, since 𝑄𝑡(𝑎) is the
approximation of the value and 𝑐√(ln 𝑡)/𝑁𝑡(𝑎) is the uncertainty, where 𝑐
is the confidence level, the sum of these two terms acts as an upper bound
for the true value 𝑞∗(𝑎).

Since the logarithm is unbounded, all actions are ensured to be cho-
sen eventually. Actions with lower value estimates 𝑄𝑡(𝑎) and actions that
have often been chosen (large 𝑁𝑡(𝑎) and low uncertainty) are selected with
lower frequency, just as they should in order to balance exploitation and
exploration.

2.3 Markov Decision Processes
The mathematical language and notation for describing and solving reinforcement-
learning problems is deeply rooted in Markov decision processes. Having
discussed multi-armed bandits as a concrete example for a reinforcement-
learning problem, we now generalize some notions and fix the notation for
the rest of the book using the language of Markov decision processes.

As already discussed in Chapter 1, the whole world is divided into an
agent and an environment. The agent interacts with the environment itera-
tively. The agent takes actions in the environment, which changes the state
of the environment and for which it receives a reward (see Figure 1.1). The
task of the agent is to learn optimal policies, i.e., to find the best action in
order to maximize all future rewards it will receive. We will now formalize
the problem of finding optimal policies.

We note the sequence of (usually discrete) time steps by 𝑡 ∈ {0, 1, 2,…}.
The state that the agent receives in time step 𝑡 from the environment is
denoted by 𝑆𝑡 ∈ 𝒮, where 𝒮 is the set of all states. The action performed by
the agent in time step 𝑡 is denoted by 𝐴𝑡 ∈ 𝒜(𝑠). In general, the set 𝒜(𝑠)
of all actions available in state 𝑠 depends on the very state 𝑠, although this
dependence is sometimes dropped to simplify notation. In the subsequent
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time step, the agent receives the reward 𝑅𝑡+1 ∈ ℛ ⊂ ℝ and finds itself in
the next state 𝑆𝑡+1. Then the iteration is repeated.

The whole information about these interactions between the agent and
the environment can be recorded in sequences ⟨𝑆𝑡⟩𝑡∈ℕ, ⟨𝐴𝑡⟩𝑡∈ℕ, and ⟨𝑅𝑡⟩𝑡∈ℕ
or in the sequence

⟨𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, 𝑅3, 𝑆3, 𝐴3,…⟩

These (finite or infinite) sequences are called episodes.
The random variables 𝑆𝑡 and 𝑅𝑡 provided by the environment depend

only on the preceding state and action. This is the Markov property, and
the whole process is a Markov decision process (mdp).

In a finite mdp, all three sets 𝒮, 𝒜, and ℛ are finite, and hence the
random variables 𝑆𝑡 and 𝑅𝑡 have discrete probability distributions.

The probability of being put into state 𝑠′ ∈ 𝒮 and receiving a reward
𝑟 ∈ ℛ after starting from a state 𝑠 ∈ 𝒮 and performing action 𝑎 ∈ 𝒜(𝑠) is
recorded by the transition probability

𝑝 ∶ 𝒮 × ℛ× 𝒮 ×𝒜 → [0, 1],
𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎) ∶= ℙ{𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟 ∣ 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎}.

Despite the notation with the vertical bar in the argument list of 𝑝, which
is reminiscent of a conditional probability, the function 𝑝 is a deterministic
function of four arguments.

The function 𝑝 records the dynamics of the mdp, and it is therefore
also called the dynamics function of the mdp. Since it is a probability
distribution, the equality

∑
𝑠′∈𝒮

∑
𝑟∈ℛ

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎) = 1 ∀𝑎 ∈ 𝒜(𝑠) ∀𝑠 ∈ 𝒮

holds.
The requirement that the Markov property holds is met by ensuring

that the information recorded in the states 𝑠 ∈ 𝒮 is sufficient. This is
an important point when translating an informal problem description into
the framework of mdps and reinforcement learning. In practice, this often
means that the states become sufficiently long vectors that contain enough
information about the past ensuring that the Markov property holds. This
in turn has the disadvantage that the dimension of the state space may have
to increase to ensure the Markov property.

It is important to note that the transition probability 𝑝, i.e., the dy-
namics of the mdp, is unknown. It is sometimes said that the term learning
refers to problems where information about the dynamics of the system is
absent. Learning algorithms face the task of calculating optimal strategies
with only very little knowledge about the environment, i.e., just the sets 𝒮
and 𝒜(𝑠).
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The dynamics function contains all relevant information about the mdp,
and therefore other quantities can be derived from it. The first quantity are
the state-transition probabilities

𝑝 ∶ 𝒮 × 𝒮 ×𝒜 → [0, 1],
𝑝(𝑠′ ∣ 𝑠, 𝑎) ∶= ℙ{𝑆𝑡 = 𝑠′ ∣ 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎} = ∑

𝑟∈ℛ
𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎),

also denoted by 𝑝, but taking only three arguments.
Next, the expected rewards for state-action pairs are

𝑟 ∶ 𝒮 ×𝒜 → ℝ,
𝑟(𝑠, 𝑎) ∶= 𝔼[𝑅𝑡 ∣ 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎] = ∑

𝑟∈ℛ
𝑟 ∑
𝑠′∈𝒮

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎).

(Note that ∑𝑟∈ℛ∑𝑠′∈𝒮 𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎) = 1 must hold.) Furthermore, the
expected rewards for state–action–next-state triples are given by

𝑟 ∶ 𝒮 ×𝒜× 𝒮 → ℝ, (2.3a)

𝑟(𝑠, 𝑎, 𝑠′) ∶= 𝔼[𝑅𝑡 ∣ 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎, 𝑆𝑡 = 𝑠′] = ∑
𝑟∈ℛ

𝑟𝑝(𝑠
′, 𝑟 ∣ 𝑠, 𝑎)

𝑝(𝑠′ ∣ 𝑠, 𝑎) .

(2.3b)

(Note that ∑𝑟∈ℛ 𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎)/𝑝(𝑠′ ∣ 𝑠, 𝑎) = 1 must hold.)
mdps can be visualized as directed graphs. The nodes are the states,

and the edges starting from a state 𝑠 correspond to the actions 𝒜(𝑠). The
edges starting from state 𝑠 may split and end in multiple target nodes 𝑠′.
The edges are labeled with the state-transition probabilities 𝑝(𝑠′ ∣ 𝑠, 𝑎) and
the expected reward 𝑟(𝑠, 𝑎, 𝑠′).

2.4 Rewards, Returns, and Episodes
We start with a remark on how rewards should be defined in practice when
translating an informal problem description into a precisely defined envi-
ronment. It is important to realize that the learning algorithms will learn
to maximize the expected value of the discounted sum of all future rewards
(defined below), nothing more and nothing less.

For example, if the agent should learn to escape a maze quickly, it is
expedient to set 𝑅𝑡 ∶= −1 for all times 𝑡. This ensures that the task is
completed quickly. The obvious alternative to define 𝑅𝑡 ∶= 0 before escaping
the maze and a positive reward when escaping fails to convey to the agent
that the maze should be escaped quickly; there is no penalty for lingering
in the maze.

Furthermore, the temptation to give out rewards for solving subproblems
must be resisted. For example, when the goal is to play chess, there should be
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no rewards to taking opponents’ pieces. Because otherwise the agent would
become proficient in taking opponents’ pieces, but not in checkmating the
king.

From now on, we make the following assumption, which is needed for
defining the return in the general case, which is the next concept we discuss.

Assumption 2.2 (bounded rewards). The reward sequence ⟨𝑅𝑡⟩𝑡∈ℕ is bounded.

There are two cases to be discerned, namely whether the episodes are
finite or infinite. We denote the time of termination, i.e., the time when the
terminal state of an episode is reached, by 𝑇 . The case of a finite episode
is called episodic, and 𝑇 < ∞ holds; the case of an infinite episode is called
continuing, and 𝑇 = ∞ holds.

Definition 2.3 (expected discounted return). The expected discounted re-
turn is

𝐺𝑡 ∶=
𝑇
∑

𝑘=𝑡+1
𝛾𝑘−(𝑡+1)𝑅𝑘 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯ ,

where 𝑇 ∈ ℕ∪ {∞} is the terminal state of the episode and 𝛾 ∈ [0, 1] is the
discount rate.

From now on, we also make the following assumption.

Assumption 2.4 (finite returns). 𝑇 = ∞ and 𝛾 = 1 do not hold at the
same time.

Assumptions 2.2 and 2.4 ensure that all returns are finite.
There is an important recursive formula for calculating the returns from

the rewards of an episode. It is found by calculating

𝐺𝑡 =
𝑇
∑

𝑘=𝑡+1
𝛾𝑘−(𝑡+1)𝑅𝑘 (2.4a)

= 𝑅𝑡+1 + 𝛾
𝑇
∑

𝑘=𝑡+2
𝛾𝑘−(𝑡+2)𝑅𝑘 (2.4b)

= 𝑅𝑡+1 + 𝛾𝐺𝑡+1. (2.4c)

The calculation also works when 𝑇 < ∞, since 𝐺𝑇 = 0, 𝐺𝑇+1 = 0, and so
forth since then the sum in the definition of 𝐺𝑡 is empty and hence equal
to zero. This formula is very useful to quickly compute returns from reward
sequences.

At this point, we can formalize what (classical) problems in reinforce-
ment learning are.

Definition 2.5 (reinforcement-learning problem). Given the states 𝒮, the
actions 𝒜(𝑠), and the opaque transition function 𝒮 × 𝒜 → 𝒮 × ℛ of the
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environment, a reinforcement-learning problem consists of finding policies
for selecting the actions of an agent such that the expected discounted return
is maximized.

The random transition provided by the mdp of the environment, namely
going from a state-action pair to a state-reward pair, being opaque means
that we consider it a black box. For any state-action pair as input, it is
only required to yield a state-reward pair as output. In particular, the
transition probabilities are considered to be unknown. Examples of such
opaque environments are

• functions 𝒮 ×𝒜 → 𝒮×ℛ defined in a programming language,

• more complex pieces of software such as computer games or simulation
software,

• historic data from which states, actions, and rewards can be observed.
The fact that the problem class in Definition 2.5 is so large adds to the

appeal of reinforcement learning.

2.5 Policies, Value Functions, and Bellman Equa-
tions

After the discussion of environments, rewards, returns, and episodes, we
focus on concepts that underlie learning algorithms.

Learning optimal policies is the goal.
Definition 2.6 (policy). A policy is a function 𝒮×𝒜(𝑠) → [0, 1]. An agent
is said to follow a policy 𝜋 at time 𝑡, if 𝜋(𝑎|𝑠) is the probability that the
action 𝐴𝑡 = 𝑎 is chosen if 𝑆𝑡 = 𝑠.

Like the dynamics function 𝑝 of the environment, a policy 𝜋 is a function
despite the notation that is reminiscent of a conditional probability. We
denote the set of all policies by 𝒫.

The following two functions, the (state-)value function and the action-
value function, are useful for the agent because they indicate how expedient
it is to be in a state or to be in a state and to take a certain action, respec-
tively. Both functions depend on a given policy.
Definition 2.7 ((state-)value function). The value function of a state 𝑠
under a policy 𝜋 is

𝑣 ∶ 𝒫 × 𝒮 → ℝ, 𝑣𝜋(𝑠) ∶= 𝔼𝜋[𝐺𝑡 ∣ 𝑆𝑡 = 𝑠],

i.e., it is the expected discounted return when starting in state 𝑠 and follow-
ing the policy 𝜋 until the end of the episode.
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Definition 2.8 (action-value function). The action-value function of a state-
action pair(𝑠, 𝑎) under a policy 𝜋 is

𝑞 ∶ 𝒫 × 𝒮 ×𝒜(𝑠) → ℝ, 𝑞𝜋(𝑠, 𝑎) ∶= 𝔼𝜋[𝐺𝑡 ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎],

i.e., it is the expected discounted return when starting in state 𝑠, taking
action 𝑎, and then following the policy 𝜋 until the end of the episode.

Recursive formulas such as (2.4) are fundamental throughout reinforce-
ment learning and dynamic programming. We now use (2.4) to find a re-
cursive formula for the value function 𝑣𝜋 by calculating

𝑣𝜋(𝑠) = 𝔼𝜋[𝐺𝑡 ∣ 𝑆𝑡 = 𝑠] (2.5a)
= 𝔼𝜋[𝑅𝑡+1 + 𝛾𝐺𝑡+1 ∣ 𝑆𝑡 = 𝑠] (2.5b)
= ∑

𝑎∈𝒜(𝑠)
𝜋(𝑎|𝑠)∑

𝑠′∈𝒮
∑
𝑟∈ℛ

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎)(𝑟 + 𝛾𝔼𝜋[𝐺𝑡+1 ∣ 𝑆𝑡+1 = 𝑠′])

(2.5c)
= ∑

𝑎∈𝒜(𝑠)
𝜋(𝑎|𝑠)∑

𝑠′∈𝒮
∑
𝑟∈ℛ

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎)(𝑟 + 𝛾𝑣𝜋(𝑠′)) ∀𝑠 ∈ 𝒮. (2.5d)

This equation is called the Bellman equation for 𝑣𝜋, and it is fundamental to
computing, approximating, and learning 𝑣𝜋. The solution 𝑣𝜋 exists uniquely
if 𝛾 < 1 or all episodes are guaranteed to terminate from all states 𝑠 ∈ 𝒮
under policy 𝜋.

In the case of a finite mdp, the optimal policy is defined as follows. We
start by noting that state-value functions can be used to define a partial
ordering over the policies: a policy 𝜋 is defined to be better than or equal
to a policy 𝜋′ if its value function 𝑣𝜋 is greater than or equal to the value
function 𝑣𝜋′ for all states. We write

𝜋 ≥ 𝜋′ ⟺ 𝑣𝜋(𝑠) ≥ 𝑣𝜋′(𝑠) ∀𝑠 ∈ 𝒮.

An optimal policy is a policy that is greater than or equal to all other
policies. The optimal policy may not be unique. We denote optimal policies
by 𝜋∗.

Optimal policies share the same state-value and action-value functions.
The optimal state-value function is given by

𝑣∗ ∶ 𝒮 → ℝ, 𝑣∗(𝑠) ∶= max
𝜋∈𝒫

𝑣𝜋(𝑠),

and the optimal action-value function is given by

𝑞∗ ∶ 𝒮 × 𝒜 → ℝ, 𝑞∗(𝑠, 𝑎) ∶= max
𝜋∈𝒫

𝑞𝜋(𝑠, 𝑎),

These two functions are related by the equation

𝑞∗(𝑠, 𝑎) = 𝔼[𝑅𝑡+1+𝛾𝑣∗(𝑆𝑡+1) ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] ∀(𝑠, 𝑎) ∈ 𝒮×𝒜(𝑠). (2.6)
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Next, we find a recursions for these two optimal value functions similar
to the Bellman equation above. Similarly to the derivation of (2.5), we
calculate

𝑣∗(𝑠) = max
𝑎∈𝒜(𝑠)

𝑞𝜋∗
(𝑠, 𝑎) (2.7a)

= max
𝑎∈𝒜(𝑠)

𝔼𝜋∗
[𝐺𝑡 ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2.7b)

= max
𝑎∈𝒜(𝑠)

𝔼𝜋∗
[𝑅𝑡+1 + 𝛾𝐺𝑡+1 ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2.7c)

= max
𝑎∈𝒜(𝑠)

𝔼[𝑅𝑡+1 + 𝛾𝑣∗(𝑆𝑡+1) ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2.7d)

= max
𝑎∈𝒜(𝑠)

∑
𝑠′∈𝒮

∑
𝑟∈ℛ

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎)(𝑟 + 𝛾𝑣∗(𝑠′)) ∀𝑠 ∈ 𝒮. (2.7e)

The last two equations are both called the Bellman optimality equation for
𝑣∗. Analogously, two forms of the Bellman optimality equation for 𝑞∗ are
𝑞∗(𝑠, 𝑎) = 𝔼[𝑅𝑡+1 + 𝛾max

𝑎′∈𝒜
𝑞∗(𝑆𝑡+1, 𝑎′) ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2.8a)

= ∑
𝑠′∈𝒮

∑
𝑟∈ℛ

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎)(𝑟 + 𝛾 max
𝑎′∈𝒜(𝑠)

𝑞∗(𝑠′, 𝑎′)) ∀(𝑠, 𝑎) ∈ 𝒮 ×𝒜(𝑠).

(2.8b)
One can try to solve the Bellman optimality equations for 𝑣∗ or 𝑞∗; they

are just systems of algebraic equations. If the optimal action-value function
𝑞∗ is known, an optimal policy 𝜋∗ is easily found; we are still considering the
case of a finite mdp. However, there are a few reasons why this approach is
seldomly expedient for realistic problems:

• The Markov property may not hold.
• The dynamics of the environment, i.e., the function 𝑝, must be known.
• The system of equations may be huge.

2.6 Policy Evaluation (Prediction)
Policy evaluation means that we evaluate how well a policy 𝜋 does by com-
puting its state-value function 𝑣𝜋. The term “policy evaluation” is com-
mon in dynamic programming, while the term “prediction” is common in
reinforcement learning. In policy evaluation, a policy 𝜋 is given and its
state-value function 𝑣𝜋 is calculated.

Instead of solving the Bellman equation (2.5) for 𝑣𝜋 directly, we follow an
iterative approach. Starting from an arbitrary initial approximation 𝑣0 ∶ 𝒮 →
ℝ (whose terminal state must have the value 0), we use (2.5) to define the
iteration

𝑣𝑘+1(𝑠) = 𝔼𝜋[𝑅𝑡+1 + 𝛾𝑣𝑘(𝑆𝑡+1) ∣ 𝑆𝑡 = 𝑠] (2.9a)
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= ∑
𝑎∈𝒜(𝑠)

𝜋(𝑎|𝑠)∑
𝑠′∈𝒮

∑
𝑟∈ℛ

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎)(𝑟 + 𝛾𝑣𝑘(𝑠′)) (2.9b)

for 𝑣𝑘+1 ∶ 𝒮 → ℝ. This iteration is called iterative policy evaluation.
If 𝛾 < 1 or all episodes are guaranteed to terminate from all states

𝑠 ∈ 𝒮 under policy 𝜋, then this operator is a contraction and hence the
approximations 𝑣𝑘 converge to the state-value function 𝑣𝜋 as 𝑘 → ∞, since
𝑣𝜋 is the fixed point by the Bellman equation (2.5) for 𝑣𝜋.

The updates performed in (2.9) and in dynamic programming in general
are called expected updates, since the expected value over all possible next
states is computed in contrast to using a sample next state.

Algorithm 2 shows how this iteration can be implemented with updates
performed in place. It also shows a common termination condition that uses
the maximum norm and a prescribed accuracy threshold.

Algorithm 2 iterative policy evaluation for approximating 𝑣 ≈ 𝑣𝜋 given
𝜋 ∈ 𝒫.

initialization:
choose the accuracy threshold 𝛿 ∈ ℝ+

initialize the vector 𝑣 of length |𝒮| arbitrarily
except that the value of the terminal state is 0

repeat
Δ ∶= 0
for all 𝑠 ∈ 𝒮 do

𝑤 ∶= 𝑣[𝑠] ▷ save the old value
𝑣[𝑠] ∶= ∑𝑎∈𝒜(𝑠) 𝜋(𝑎|𝑠)∑𝑠′∈𝒮∑𝑟∈ℛ 𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎)(𝑟 + 𝛾𝑣[𝑠′])
Δ ∶= max(Δ, |𝑣[𝑠] − 𝑤|)

end for
until Δ < 𝛿

return 𝑣

2.7 Policy Improvement
Having seen how we can evaluate a policy, we now discuss how to improve
it. To do so, the value functions show their usefulness. For now, we assume
that the policies we consider here are deterministic.

Similarly to (2.6), the action value of selecting action 𝑎 and then following
policy 𝜋 can be written as

𝑞𝜋(𝑠, 𝑎) = 𝔼[𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1) ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2.10a)
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= ∑
𝑠′∈𝒮

∑
𝑟∈ℛ

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎)(𝑟 + 𝛾𝑣𝜋(𝑠′)) ∀(𝑠, 𝑎) ∈ 𝒮 ×𝒜(𝑠).

(2.10b)

This formula helps us determine if the action 𝜋′(𝑠) of another policy 𝜋′ is
an improvement over 𝜋(𝑠) in this time step. In order to be an improvement
in this time step, the inequality

𝑞𝜋(𝑠, 𝜋′(𝑠)) ≥ 𝑣𝜋(𝑠)

must hold. If this inequality holds, we also expect that selecting 𝜋′(𝑠) instead
of 𝜋(𝑠) every time the state 𝑠 occurs is an improvement. This is the subject
of the following theorem.

Theorem 2.9 (policy improvement theorem). Suppose 𝜋 and 𝜋′ are two
deterministic policies such that

𝑞𝜋(𝑠, 𝜋′(𝑠)) ≥ 𝑣𝜋(𝑠) ∀𝑠 ∈ 𝒮.

Then
𝜋′ ≥ 𝜋,

i.e., the policy 𝜋′ is greater than or equal to 𝜋.

Proof. By the definition of the partial ordering of policies, we must show
that

𝑣𝜋′(𝑠) ≥ 𝑣𝜋(𝑠) ∀𝑠 ∈ 𝒮.
Using the assumption and (2.10), we calculate

𝑣𝜋(𝑠) ≤ 𝑞𝜋(𝑠, 𝜋′(𝑠))
= 𝔼[𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1) ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝜋′(𝑠)]
= 𝔼𝜋′ [𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1) ∣ 𝑆𝑡 = 𝑠]
≤ 𝔼𝜋′ [𝑅𝑡+1 + 𝛾𝑞𝜋(𝑆𝑡+1, 𝜋′(𝑆𝑡+1)) ∣ 𝑆𝑡 = 𝑠]
= 𝔼𝜋′ [𝑅𝑡+1 + 𝛾𝔼𝜋′ [𝑅𝑡+2 + 𝛾𝑣𝜋(𝑆𝑡+2) ∣ 𝑆𝑡+1] ∣ 𝑆𝑡 = 𝑠]
= 𝔼𝜋′ [𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑣𝜋(𝑆𝑡+2) ∣ 𝑆𝑡 = 𝑠]
≤ 𝔼𝜋′ [𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + 𝛾3𝑣𝜋(𝑆𝑡+3) ∣ 𝑆𝑡 = 𝑠]
⋮

≤ 𝔼𝜋′ [𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + 𝛾3𝑅𝑡+4 +⋯ ∣ 𝑆𝑡 = 𝑠]
= 𝑣𝜋′(𝑠),

which concludes the proof.

In addition to making changes to the policy in single states, we can define
a new, greedy policy 𝜋′ by selection the action that appears best in each
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state according to a given action-value function 𝑞𝜋. This greedy policy is
given by

𝜋′(𝑠) ∶= argmax
𝑎∈𝒜(𝑠)

𝑞𝜋(𝑠, 𝑎), (2.11a)

= argmax
𝑎∈𝒜(𝑠)

𝔼[𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1) ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2.11b)

= argmax
𝑎∈𝒜(𝑠)

∑
𝑠′∈𝒮

∑
𝑟∈ℛ

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎)(𝑟 + 𝛾𝑣𝜋(𝑠′)). (2.11c)

Any ties in the argmax are broken in a random manner. By construction,
the policy 𝜋′ satisfies the assumption of Theorem 2.9, implying that it is
better than or equal to 𝜋. This process is called policy improvement. We
have created a new policy that improves on the original policy by making it
greedy with respect to the value function of the original policy.

In the case that the 𝜋′ = 𝜋, i.e., the new, greedy policy is as good as the
original one, the equation 𝑣𝜋 = 𝑣𝜋′ follows, and using the definition (2.11)
of 𝜋′, we find

𝑣𝜋′(𝑠) = max
𝑎∈𝒜(𝑠)

𝔼[𝑅𝑡+1 + 𝛾𝑣𝜋′(𝑆𝑡+1) ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2.12a)

= max
𝑎∈𝒜(𝑠)

∑
𝑠′∈𝒮

∑
𝑟∈ℛ

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎)(𝑟 + 𝛾𝑣𝜋′(𝑠′)) ∀𝑠 ∈ 𝒮, (2.12b)

which is the Bellman optimality equation (2.7). Since 𝑣𝜋′ satisfies the op-
timality equation (2.7), 𝑣𝜋′ = 𝑣∗ holds, meaning that both 𝜋 and 𝜋′ are
optimal policies. In other words, policy improvement yields a strictly better
policy unless the original policy is already optimal.

So far we have considered only stochastic policies, but these ideas can be
extended to stochastic policies, and Theorem 2.9 also holds for stochastic
policies. When defining the greedy policy, all maximizing actions can be
assigned some nonzero probability.

2.8 Policy Iteration
Policy iteration is the process of using policy evaluation and policy improve-
ment to define a sequence of monotonically improving policies and value
functions. We start from a policy 𝜋0 and evaluate it to find its state-value
function 𝑣𝜋0

. Using 𝑣𝜋0
, we use policy improvement to define a new policy

𝜋1. This policy is evaluated, and so forth, resulting in the sequence

𝜋0
eval.⟶ 𝑣𝜋0

impr.
⟶ 𝜋1

eval.⟶ 𝑣𝜋1

impr.
⟶ 𝜋2

eval.⟶ 𝑣𝜋2

impr.
⟶ ⋯

impr.
⟶ 𝜋∗

eval.⟶ 𝑣∗.

Unless a policy 𝜋𝑘 is already optimal, it is a strict improvement over
the previous policy 𝜋𝑘−1. In the case of a finite mdp, there is only a finite
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number of policies, and hence the sequence converges to the optimal policy
and value function within a finite number of iterations.

A policy-iteration algorithm is shown in Algorithm 3. Each policy evalu-
ation is started with the value function of the previous policy, which speeds
up convergence. Note that the update of 𝑣[𝑠] has changed.

Algorithm 3 policy iteration for calculating 𝑣 ≈ 𝑣∗ and 𝜋 ≈ 𝜋∗.
initialization:
choose the accuracy threshold 𝛿 ∈ ℝ+

initialize the vector 𝑣 of length |𝒮| arbitrarily
except that the value of the terminal state is 0

initialize the vector 𝜋 of length |𝒮| arbitrarily

loop
policy evaluation:
repeat

Δ ∶= 0
for all 𝑠 ∈ 𝒮 do

𝑤 ∶= 𝑣[𝑠] ▷ save the old value
𝑣[𝑠] ∶= ∑𝑠′∈𝒮∑𝑟∈ℛ 𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝜋(𝑠))(𝑟 + 𝛾𝑣[𝑠′])

▷ note the change: 𝜋[𝑠] is an optimal action
Δ ∶= max(Δ, |𝑣[𝑠] − 𝑤|)

end for
until Δ < 𝛿

policy improvement:
policyIsStable := true
for all 𝑠 ∈ 𝒮 do

oldAction := 𝜋[𝑠]
𝜋[𝑠] ∶= argmax𝑎∈𝒜(𝑠)∑𝑠′∈𝒮∑𝑟∈ℛ 𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎)(𝑟 + 𝛾𝑣[𝑠′])
if oldAction ≠ 𝜋(𝑠) then

policyIsStable := false
end if

end for
if policyIsStable then

return 𝑣 ≈ 𝑣∗ and 𝜋 ≈ 𝜋∗
end if

end loop
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2.9 Value Iteration
A time-consuming property in Algorithm 3 is the fact that the repeat loop
for policy evaluation is nested within the outer loop. Nesting these two
loops may be quite time consuming. (The other inner loop is a for loop with
a fixed number of iterations.) This suggests to try to get rid of these two
nested loops while still guaranteeing convergence. An important simple case
is to perform only one iteration policy evaluation, which makes it possible to
combine policy evaluation and improvement into one loop. This algorithm
is called value iteration, and it can be shown to convergence under the same
assumptions that guarantee the existence of 𝑣∗.

Turning the fixed-point equation (2.12) into an iteration, value iteration
becomes the update

𝑣𝑘+1(𝑠) ∶= max
𝑎∈𝒜(𝑠)

𝔼[𝑅𝑡+1 + 𝛾𝑣𝑘(𝑆𝑡+1) ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

= max
𝑎∈𝒜(𝑠)

∑
𝑠′∈𝒮

∑
𝑟∈ℛ

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎)(𝑟 + 𝛾𝑣𝑘(𝑠′)).

The algorithm is shown in Algorithm 4. Note that the update of 𝑣[𝑠]
has changed again, now incorporating taking the maximum from the policy-
improvement part.

2.10 Bibliographical and Historical Remarks
The most influential introductory text book on reinforcement learning is [8].
An excellent summary of the theory is [9].

Problems
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Algorithm 4 value iteration for calculating 𝑣 ≈ 𝑣∗ and 𝜋 ≈ 𝜋∗.
initialization:
choose the accuracy threshold 𝛿 ∈ ℝ+

initialize the vector 𝑣 of length |𝒮| arbitrarily
except that the value of the terminal state is 0

initialize the vector 𝜋 of length |𝒮| arbitrarily

policy evaluation and improvement:
repeat

Δ ∶= 0
for all 𝑠 ∈ 𝒮 do

𝑤 ∶= 𝑣[𝑠] ▷ save the old value
𝑣[𝑠] ∶= max𝑎∈𝒜(𝑠)∑𝑠′∈𝒮∑𝑟∈ℛ 𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎)(𝑟 + 𝛾𝑣[𝑠′])

▷ note the change
Δ ∶= max(Δ, |𝑣[𝑠] − 𝑤|)

end for
until Δ < 𝛿

calculate deterministic policy:
for all 𝑠 ∈ 𝒮 do

𝜋[𝑠] ∶= argmax𝑎∈𝒜(𝑠)∑𝑠′∈𝒮∑𝑟∈ℛ 𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎)(𝑟 + 𝛾𝑣[𝑠′])
end for

return 𝑣 ≈ 𝑣∗ and 𝜋 ≈ 𝜋∗
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Chapter 3

Monte-Carlo Methods

3.1 Introduction

3.2 Monte-Carlo Prediction
Prediction means learning the state-value function for a given policy 𝜋.
The Monte-Carlo (mc) idea is to estimate the state-value function 𝑣𝜋 at all
states 𝑠 ∈ 𝒮 by averaging the returns obtained after the occurrences of each
state 𝑠 in many episodes. There are two variants:

• In first-visit mc, only the first occurrence of a state 𝑠 in an episode is
used to calculate the average and hence to estimate 𝑣𝜋(𝑠).

• In every-visit mc, all occurrences of a state 𝑠 in an episode are used
to calculate the average.

First-visit mc prediction is shown in Algorithm 5. In the every-visit
variant, the check towards the end whether the occurrence is the first is left
out.

The converge of first-visit mc prediction to 𝑣𝜋 as the number of visits
goes to infinity follows from the law of large numbers, since each return
is an independent and identically distributed estimate of 𝑣𝜋(𝑠) with finite
variance. It is well-known that each average calculated in this manner is an
unbiased estimate and that the standard deviation of the error is propor-
tional to 𝑛−1/2, where 𝑛 is the number of occurrences of the state 𝑠.

The convergence proof for every-visit mc is more involved, since the
occurrences are not independent.

The main advantage of mc methods is that they are simple methods. It
is always possible to generate sample episodes.

Another feature of mc methods is that the approximations of 𝑣𝜋(𝑠) are
independent from on another. The approximation for one state does not
build on or depend on the approximation for another state, i.e., mc methods
do not bootstrap.
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Algorithm 5 first/every-visit mc prediction for calculating 𝑣 ≈ 𝑣∗ given
the policy 𝜋.

initialization:
initialize the vector 𝑣 of length |𝒮| arbitrarily
initialize returns(𝑠) to be an empty list for all 𝑠 ∈ 𝒮

loop ▷ for all episodes
generate an episode (𝑆0, 𝐴0, 𝑅1,… , 𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑇 ) following 𝜋
𝑔 ∶= 0
for 𝑡 ∈ (𝑇 − 1, 𝑇 − 2,… , 0) do ▷ for all time steps

𝑔 ∶= 𝛾𝑔 + 𝑅𝑡+1
if 𝑆𝑡 ∉ {𝑆0,… , 𝑆𝑡−1} then ▷ remove check for every-visit mc

append 𝑔 to the list returns(𝑆𝑡)
𝑣(𝑆𝑡) ∶= average(returns(𝑆𝑡))

end if
end for

end loop

Furthermore, the computational expense is independent of the number
of states. Sometimes it is possible to steer the computation to interesting
states by choosing the starting states of the episodes suitably.

One can also try to estimate the action-value function 𝑞𝜋 using mc.
However, it is possible that many state-action pairs are never visited or
only very seldomly. In other words, there may not be sufficient exploration.
Sometimes it is possible to prescribe the starting state-action pairs of the
episodes, which are then called exploring starts. It is then possible to remedy
this problem, but it depends on the environment if this is possible or not.
Exploring starts are not a general solution.

3.3 On-Policy Monte-Carlo Control
Control means to approximate optimal policies. The idea is the same as
in Section 2.8, namely to iteratively perform policy evaluation and policy
improvement. By Theorem 2.9, the sequences of value functions and policies
converge to the optimal value functions and to the optimal policies under
the assumption of exploring starts and under the assumption that infinitely
many episodes are available.

An on-policy method is a method where the policy that is used to gen-
erate episodes is the same as the policy that is being improved. This is in
contrast to off-policy methods, where these two policies are different ones
(see Section 3.4).

But exploring starts are not available in general. Another important way
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to ensure sufficient exploration (and hence convergence) is to use 𝜖-greedy
policies as shown in Algorithm 6.

Algorithm 6 on-policy first-visit mc control for calculating 𝜋 ≈ 𝜋∗.
initialization:
choose 𝜖 ∈ (0, 1)
initialize 𝜋 to be an 𝜖-greedy policy
initialize 𝑞(𝑠, 𝑎) ∈ ℝ arbitrarily for all (𝑠, 𝑎) ∈ 𝒮 ×𝒜(𝑠)
initialize returns(𝑠, 𝑎) to be an empty list for all (𝑠, 𝑎) ∈ 𝒮 ×𝒜(𝑠)

loop ▷ for all episodes
generate an episode (𝑆0, 𝐴0, 𝑅1,… , 𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑇 ) following 𝜋
𝑔 ∶= 0
for 𝑡 ∈ (𝑇 − 1, 𝑇 − 2,… , 0) do ▷ for all time steps

𝑔 ∶= 𝛾𝑔 + 𝑅𝑡+1
if 𝑆𝑡 ∉ {𝑆0,… , 𝑆𝑡−1} then ▷ remove check for every-visit mc

append 𝑔 to the list returns(𝑆𝑡, 𝐴𝑡)
𝑞(𝑆𝑡, 𝐴𝑡) ∶= average(returns(𝑆𝑡, 𝐴𝑡))
𝑎∗ ∶= argmax𝑎∈𝒜(𝑠) 𝑞(𝑆𝑡, 𝑎) ▷ break ties randomly
for all 𝑎 ∈ 𝒜(𝑆𝑡) do

𝜋(𝑎|𝑆𝑡) ∶= {1 − 𝜖 + 𝜖/|𝒜(𝑆𝑡)|, 𝑎 = 𝑎∗,
𝜖/|𝒜(𝑆𝑡)|, 𝑎 ≠ 𝑎∗.

end for
end if

end for
end loop

3.4 Off-Policy Methods and Importance Sampling
The dilemma between exploitation and exploration is a fundamental one in
learning. The goal in action-value methods is to learn the correct action
values, which depend on future optimal behavior. But at the same time, the
algorithm must perform sufficient exploration to be able to discover optimal
actions first.

The on-policy mc control algorithm, Algorithm 6 in the previous section
comprises by using 𝜖-greedy policies. Off-policy methods clearly distinguish
between two policies:

• The behavior policy 𝑏 is used to generate episodes. It is usually
stochastic.

• The target policy 𝜋 is the policy that is improved. It is usually the
deterministic greedy policy with respect to the action-value function.
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The behavior and the target policies must satisfy the assumption of
coverage, i.e., that 𝜋(𝑎|𝑠) > 0 implies 𝑏(𝑎|𝑠) > 0. In other words, every
action that the target policy 𝜋 performs must also be performed by the
behavior policy 𝑏.

The by far most common technique used in off-policy methods is impor-
tance sampling. Importance sampling is a general technique that makes it
possible to estimate the expected value under one probability distribution
by using samples from another distribution. In off-policy methods it is of
course used to adjust the returns from the behavior to the target policy.

We start by considering the probability

ℙ{𝐴𝑡, 𝑆𝑡+1, 𝐴𝑡+1,… , 𝑆𝑇 ∣ 𝑆𝑡, 𝐴𝑡∶𝑇−1 ∼ 𝜋} =
𝑇−1
∏
𝑘=𝑡

𝜋(𝐴𝑘|𝑆𝑘)𝑝(𝑆𝑘+1 ∣ 𝑆𝑘, 𝐴𝑘)

that a trajectory (𝐴𝑡, 𝑆𝑡+1, 𝐴𝑡+1,… , 𝑆𝑇 ) occurs after starting from state 𝑆𝑡
and following policy 𝜋. Then the relative probability

𝜌𝑡∶𝑇−1 ∶= ∏𝑇−1
𝑘=𝑡 𝜋(𝐴𝑘|𝑆𝑘)𝑝(𝑆𝑘+1 ∣ 𝑆𝑘, 𝐴𝑘)

∏𝑇−1
𝑘=𝑡 𝑏(𝐴𝑘|𝑆𝑘)𝑝(𝑆𝑘+1 ∣ 𝑆𝑘, 𝐴𝑘)

= ∏𝑇−1
𝑘=𝑡 𝜋(𝐴𝑘|𝑆𝑘)

∏𝑇−1
𝑘=𝑡 𝑏(𝐴𝑘|𝑆𝑘)

of this trajectory under the target and behavior policies is called the importance-
sample ratio. Fortunately, the transition probabilities of the mdp cancel.

Now the importance-sample ratio makes it possible to adjust the re-
turns 𝐺𝑡 from the behavior policy 𝑏 to the target policy 𝜋. We are not
interested in the state-value function

𝑣𝑏(𝑠) = 𝔼[𝐺𝑡 ∣ 𝑆𝑡 = 𝑠]
of 𝑏, but in the state-value function

𝑣𝜋(𝑠) = 𝔼[𝜌𝑡∶𝑇−1𝐺𝑡 ∣ 𝑆𝑡 = 𝑠]
of 𝜋.

Within a mc method, this means that we calculate averages of these
adjusted returns. There are two variants of averages that are used for this
purpose. First, we define some notation. It is convenient to number all time
steps across all episodes consecutively. We denote the set of all time steps
when state 𝑠 occurs by 𝒯(𝑠), the first time the termination state is reached
after time 𝑡 by 𝑇 (𝑡), and the return after time 𝑡 till the end of the episode
at time 𝑇 (𝑡) again by 𝐺𝑡. Then the set {𝐺𝑡}𝑡∈𝒯(𝑠) contains all returns after
visiting state 𝑠 and the set {𝜌𝑡∶𝑇 (𝑡)−1}𝑡∈𝒯(𝑠) contains the important-sampling
ratios.

The first variant is called ordinary importance sampling. It is the mean
of all adjusted returns 𝜌𝑡∶𝑇−1𝐺𝑡, i.e.,

𝑉o(𝑠) ∶=
∑𝑡∈𝒯(𝑠) 𝜌𝑡∶𝑇−1𝐺𝑡

|𝒯(𝑠)| .
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In the second variant, the factors 𝜌𝑡∶𝑇−1 are interpreted as weights, and the
weighted mean

𝑉w(𝑠) ∶=
∑𝑡∈𝒯(𝑠) 𝜌𝑡∶𝑇−1𝐺𝑡
∑𝑡∈𝒯(𝑠) 𝜌𝑡∶𝑇−1

is used. It is defined to be zero if the denominator is zero. This variant is
called weighted importance sampling.

Although the weighted-average estimate has expectation 𝑣𝑏(𝑠) rather
than the desired 𝑣𝜋(𝑠), it is much preferred in practice because it is much
lower variance. On the other hand, ordinary importance sampling is easier
to extend to approximate methods.

3.5 Bibliographical and Historical Remarks

Problems
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Chapter 4

Temporal-Difference
Learning

4.1 Introduction
Temporal-difference (td) methods are at the core of reinforcement learning.
td methods combine the advantages of dynamic programming (see Chap-
ter 2) and mc (see Chapter 3). td methods do not require any knowledge
of the dynamics of the environments in contrast to dynamic programming,
which requires full knowledge. The disadvantage of mc methods is that the
end of an episode must be reached before any updates are performed; in
td updates are performed immediately or much earlier based on approxi-
mations learned earlier, i.e., they bootstrap approximations from previous
approximations.

4.2 On-Policy Temporal-Difference Prediction: TD(0)
In prediction, an approximation 𝑉 of the state-value function 𝑣𝜋 is calculated
for a given policy 𝜋 ∈ 𝒫. The simplest td method is called TD(0) or one-
step td. It performs the update

𝑉 (𝑆𝑡) ∶= 𝑉 (𝑆𝑡) + 𝛼(𝑅𝑡+1 + 𝛾𝑉 (𝑆𝑡+1) − 𝑉 (𝑆𝑡)) (4.1)

after having received the reward 𝑅𝑡+1. Note that this equation has the form
(2.1) with 𝑅𝑡+1 +𝛾𝑉 (𝑆𝑡+1) being the target value. The new approximation
on the left side is based on the previous approximation on the right side.
Therefore this method is a bootstrapping method.

The algorithm based on this update is shown in Algorithm 7.
From Chapter 2, we know about the state-value function that

𝑣𝜋(𝑠) = 𝔼𝜋[𝐺𝑡 ∣ 𝑆𝑡 = 𝑠] (4.2a)
= 𝔼𝜋[𝑅𝑡+1 + 𝛾𝐺𝑡+1 ∣ 𝑆𝑡 = 𝑠] (4.2b)
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Algorithm 7 TD(0) for calculating 𝑉 ≈ 𝑣𝜋 given 𝜋.
initialization:
choose learning rate 𝛼 ∈ (0, 1]
initialize the vector 𝑣 of length |𝒮| arbitrarily

except that the value of the terminal state is 0

loop ▷ for all episodes
initialize 𝑠
repeat ▷ for all time steps

set 𝑎 to be the action given by 𝜋 for 𝑠
take action 𝑎 and receive the new state 𝑠′ and the reward 𝑟
𝑣[𝑠] ∶= 𝑣[𝑠] + 𝛼(𝑟 + 𝛾𝑣[𝑠′] − 𝑣[𝑠])
𝑠 ∶= 𝑠′

until 𝑠 is the terminal state and the episode is finished
end loop

= 𝔼𝜋[𝑅𝑡+1 + 𝛾𝑣𝜋(𝑆𝑡+1) ∣ 𝑆𝑡 = 𝑠]. (4.2c)

These equations help us to interpret the differences between dynamic pro-
gramming, mc, and td. Considering the target values in the updates, the
target in dynamic programming is an estimate because 𝑣𝜋(𝑆𝑡+1) in (4.2c) is
unknown and the previous approximation 𝑉 (𝑆𝑡+1) is used instead. The tar-
get in mc is an estimate, because the expected value in (4.2a) is unknown
and a sample of the return is used instead. The target in td is an esti-
mate because of both reasons: 𝑣𝜋(𝑆𝑡+1) in (4.2c) is replaced by the previous
approximation 𝑉 (𝑆𝑡+1) and the expected value in (4.2c) is replaced by a
sample of the return.

One advantage of td methods is the fact that they do not require any
knowledge of the environment just like mc methods. The advantage of td
methods over mc methods is that they perform an update immediately after
having received a reward (or after some time steps in multi-step methods)
instead of waiting till the end of the episode.

However, td methods employ two approximations as discussed above.
Do they still converge? The answer is yes. TD(0) converges to 𝑣𝜋 (for
given 𝜋) in the mean if the learning rate is constant and sufficiently small.
It converges with probability one if the learning rate satisfies the stochastic-
approximation conditions (2.2).

It has not been possible so far to show stringent results about the which
method, mc or td, converges faster. However, it has been found empirically
that td methods usually converge faster than mc methods with constant
learning rates when the environment is stochastic.
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4.3 On-Policy Temporal-Difference Control: sarsa

If we can approximation the optimal action-value function 𝑞∗, we can imme-
diately find the best action argmax𝑎∈𝒜 𝑞(𝑠, 𝑎) in state 𝑠 whenever the mdp
is finite. In order to solve control problems, i.e., to calculate optimal poli-
cies, it therefore suffices to approximate the action-value function. In order
to do so, we replace 𝑉 in (4.1) by the approximation 𝑄 of the action-value
function 𝑞𝜋 to find the update

𝑄(𝑆𝑡, 𝐴𝑡) ∶= 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼(𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1) − 𝑄(𝑆𝑡, 𝐴𝑡)). (4.3)

This method is called sarsa due to the appearance of the values 𝑆𝑡, 𝐴𝑡,
𝑅𝑡+1, 𝑆𝑡+1, and 𝐴𝑡+1.

The corresponding control algorithm is shown in Algorithm 8.

Algorithm 8 sarsa for calculating 𝑄 ≈ 𝑞∗ and 𝜋∗.
initialization:
choose learning rate 𝛼 ∈ (0, 1]
choose 𝜖 > 0
initialize 𝑞(𝑠, 𝑎) ∈ ℝ arbitrarily for all (𝑠, 𝑎) ∈ 𝒮 ×𝒜(𝑠)

except that the value of the terminal state is 0

loop ▷ for all episodes
initialize 𝑠
choose action 𝑎 from 𝑠 using an (𝜖-greedy) policy derived from 𝑞
repeat ▷ for all time steps

take action 𝑎 and receive the new state 𝑠′ and the reward 𝑟
choose action 𝑎′ from 𝑠′ using an (𝜖-greedy) policy derived from 𝑞
𝑞[𝑠, 𝑎] ∶= 𝑞[𝑠, 𝑎] + 𝛼(𝑟 + 𝛾𝑞[𝑠′, 𝑎′] − 𝑞[𝑠, 𝑎])
𝑠 ∶= 𝑠′
𝑎 ∶= 𝑎′

until 𝑠 is the terminal state and the episode is finished
end loop

sarsa converges to an optimal policy and action-value function with
probability one if all state-action pairs are visited an infinite number of
times and the policy converges to the greedy policy. The convergence of the
policy to the greedy policy can be ensured by using an 𝜖-greedy policy and
𝜖𝑡 → 0.
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4.4 On-Policy Temporal-Difference Control: Ex-
pected sarsa

Expected sarsa is derived from sarsa by replacing the target 𝑅𝑡+1 +
𝛾𝑄(𝑆𝑡+1, 𝐴𝑡+1) in the update by

𝑅𝑡+1 + 𝛾𝔼𝜋[𝑄(𝑆𝑡+1, 𝐴𝑡+1) ∣ 𝑆𝑡+1].

This means that the updates in expected sarsa moves in a deterministic
manner into the same direction as the updates in sarsa move in expectation.

The update in expected sarsa hence is

𝑄(𝑆𝑡, 𝐴𝑡) ∶= 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼(𝑅𝑡+1 + 𝛾𝔼𝜋[𝑄(𝑆𝑡+1, 𝐴𝑡+1) ∣ 𝑆𝑡+1] − 𝑄(𝑆𝑡, 𝐴𝑡))
= 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼(𝑅𝑡+1 + 𝛾 ∑

𝑎∈𝒜(𝑠)
𝜋(𝑎|𝑆𝑡+1)𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)).

Each update is more computationally expense than an update in sarsa.
The advantage, however, is that the variance that is introduced due to the
randomness in 𝐴𝑡 is reduced.

4.5 Off-Policy Temporal-Difference Control: Q-
Learning

One of the mainstays in reinforcement learning is 𝑄-learning, which is an
off-policy td control algorithm [10]. Its update is

𝑄(𝑆𝑡, 𝐴𝑡) ∶= 𝑄(𝑆𝑡, 𝐴𝑡) + 𝛼(𝑅𝑡+1 + 𝛾 max
𝑎∈𝒜(𝑆𝑡+1)

𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡, 𝐴𝑡)).

Using this update, the approximation 𝑄 approximates 𝑞∗ directly indepen-
dently of the policy followed. Therefore, it is an off-policy method.

The policy that is being following still influences convergence and con-
vergence speed. In particular, it must be ensured that all state-action pairs
occur an infinite number of times. But this is a reasonable assumption,
because their action values cannot be updated without visiting them.

The corresponding algorithm is shown in Algorithm 9.
Variants of 𝑄-learning are presented in Chapter 5, and convergence re-

sults for 𝑄-learning are given in Chapter 12.

4.6 On-Policy Multi-Step Temporal-Difference Pre-
diction: 𝑛-step td

The idea of multi-step temporal-difference methods is to perform not only
one time step as in the methods in this chapter so far, but to perform
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Algorithm 9 𝑄-learning for calculating 𝑄 ≈ 𝑞∗ and 𝜋 ≈ 𝜋∗.
initialization:
choose learning rate 𝛼 ∈ (0, 1]
choose 𝜖 > 0
initialize 𝑞(𝑠, 𝑎) ∈ ℝ arbitrarily for all (𝑠, 𝑎) ∈ 𝒮 ×𝒜(𝑠)

except that the value of the terminal state is 0

loop ▷ for all episodes
initialize 𝑠
repeat ▷ for all time steps

choose action 𝑎 from 𝑠 using an (𝜖-greedy) policy derived from 𝑞
take action 𝑎 and receive the new state 𝑠′ and the reward 𝑟
𝑞[𝑠, 𝑎] ∶= 𝑞[𝑠, 𝑎] + 𝛼(𝑟 + 𝛾max𝑎∈𝒜(𝑠′) 𝑞[𝑠′, 𝑎] − 𝑞[𝑠, 𝑎])
𝑠 ∶= 𝑠′

until 𝑠 is the terminal state and the episode is finished
end loop

multiple time steps and use the accumulated rewards as the target in the
update. The multi-step methods will still be bootstrapping methods, of
course.

Therefore we start by defining the return over 𝑛 time steps being based
on the state-value function afterwards.

Definition 4.1 (𝑛-step return (using 𝑉 )). The 𝑛-step return using 𝑉 is
defined as

𝐺𝑡∶𝑡+𝑛 ∶= {𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑛−1𝑅𝑡+𝑛 + 𝛾𝑛𝑉𝑡+𝑛−1(𝑆𝑡+𝑛), 𝑡 + 𝑛 < 𝑇 ,
𝐺𝑡, 𝑡 + 𝑛 ≥ 𝑇

for all 𝑛 ≥ 1.

In the second case, when the time 𝑡 + 𝑛 is equal to the last time 𝑇 in an
episode or larger, the 𝑛-step return 𝐺𝑡∶𝑡+𝑛 is equal to the return 𝐺𝑡, which
was defined to include all rewards up to the end of an episode.

Of course, the 𝑛-step return 𝐺𝑡∶𝑡+𝑛 will only be available after having
received the reward 𝑅𝑡+𝑛 in time step 𝑡 + 𝑛. Hence no updates are possible
in the first 𝑛−1 time steps of each episode. We also have to be careful when
indexing the approximations 𝑉𝑡. Approximation 𝑉𝑡+𝑛 is available in time
step 𝑡 + 𝑛, it uses the 𝑛-step return 𝐺𝑡∶𝑡+𝑛 as its target, and it bootstraps
from the previous approximation 𝐺𝑡∶𝑡+𝑛+1. The state value of state 𝑆𝑡, 𝑛
steps in the past, is updated (with the information obtained in the future 𝑛
steps), and the state values of all other states remain unchanged as usual in
such update formulas.
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Therefore we define the 𝑛-step td update as

𝑉𝑡+𝑛(𝑠) ∶= {𝑉𝑡+𝑛−1(𝑆𝑡) + 𝛼(𝐺𝑡∶𝑡+𝑛 − 𝑉𝑡+𝑛−1(𝑆𝑡)), 𝑠 = 𝑆𝑡,
𝑉𝑡+𝑛−1(𝑠), 𝑠 ≠ 𝑆𝑡

for all 0 ≤ 𝑡 < 𝑇 . In the case 𝑛 = 1, we recover the one-step update (4.1).
The corresponding algorithm is shown in Algorithm 10. Some bookkeep-

ing is required because the rewards for the updates must be accumulated
first. The states 𝑆𝑡 and rewards 𝑅𝑡 are saved in vectors of length 𝑛 + 1.
Since only their history of this length is required, 𝑆𝑡 (and 𝑅𝑡) can be stored
as the element number 𝑡 mod 𝑛 + 1.

4.7 On-Policy Multi-Step Temporal-Difference Con-
trol: 𝑛-step sarsa

The multi-step version of sarsa is an extension of the one-step sarsa
method in Section 4.3. Analogously to 𝑛-step td, it uses 𝑛 future rewards,
but replaces the approximation 𝑉 of the state-value function by the approx-
imation 𝑄 of the action-value function. We therefore redefine the 𝑛-step
return as follows.

Definition 4.2 (𝑛-step return (using 𝑄)). The 𝑛-step return using 𝑄 is
defined as

𝐺𝑡∶𝑡+𝑛 ∶= {𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑛−1𝑅𝑡+𝑛 + 𝛾𝑛𝑄𝑡+𝑛−1(𝑆𝑡+𝑛, 𝐴𝑡+𝑛), 𝑡 + 𝑛 < 𝑇 ,
𝐺𝑡, 𝑡 + 𝑛 ≥ 𝑇

for all 𝑛 ≥ 1.

Therefore the 𝑛-step sarsa update is

𝑄𝑡+𝑛(𝑠, 𝑎) ∶= {𝑄𝑡+𝑛−1(𝑆𝑡) + 𝛼(𝐺𝑡∶𝑡+𝑛 −𝑄𝑡+𝑛−1(𝑆𝑡, 𝐴𝑡)), (𝑠, 𝑎) = (𝑆𝑡, 𝐴𝑡),
𝑄𝑡+𝑛−1(𝑠, 𝑎), (𝑠, 𝑎) ≠ (𝑆𝑡, 𝐴𝑡)

for all 0 ≤ 𝑡 < 𝑇 . In the case 𝑛 = 1, we recover the one-step update (4.3).
The corresponding algorithm is shown in Algorithm 11.

4.8 Bibliographical and Historical Remarks

Problems
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Algorithm 10 𝑛-step td for calculating 𝑉 ≈ 𝑣𝜋 given 𝜋.
initialization:
choose number of steps 𝑛
choose learning rate 𝛼 ∈ (0, 1]
initialize the vector 𝑣 of length |𝒮| arbitrarily

except that the value of the terminal state is 0

loop ▷ for all episodes
initialize and store 𝑆0
𝑡 ∶= 0
𝑇 ∶= ∞

repeat ▷ for all time steps
if 𝑡 < 𝑇 then

set 𝑎 to be the action given by 𝜋 for 𝑆𝑡
take action 𝑎 and receive the new state 𝑆𝑡+1 and the re-

ward 𝑅𝑡+1
if 𝑆𝑡+1 is terminal then

𝑇 ∶= 𝑡 + 1
end if

end if

𝜏 ∶= 𝑡 − 𝑛 + 1 ▷ time step whose approximation is now updated
if 𝜏 ≥ 0 then

𝐺 ∶= ∑min(𝜏+𝑛,𝑇)
𝑘=𝜏+1 𝛾𝑖−𝜏−1𝑅𝑖

if 𝜏 + 𝑛 < 𝑇 then
𝐺 ∶= 𝐺+ 𝛾𝑛𝑣(𝑆𝜏+𝑛)

end if
𝑣[𝑆𝜏 ] ∶= 𝑣[𝑆𝜏 ] + 𝛼(𝐺 − 𝑣[𝑆𝜏 ])

end if
𝑡 ∶= 𝑡 + 1

until 𝜏 + 1 = 𝑇 ▷ corresponding to the final non-zero 𝐺,
𝐺 = 𝑅𝜏+1 = 𝑅𝑇
end loop
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Algorithm 11 𝑛-step sarsa for calculating 𝑄 ≈ 𝑞∗ and 𝜋 ≈ 𝜋∗.
initialization:
choose number of steps 𝑛
choose learning rate 𝛼 ∈ (0, 1]
initialize 𝑄(𝑠, 𝑎) ∈ ℝ arbitrarily for all (𝑠, 𝑎) ∈ 𝒮 ×𝒜(𝑠)

except that the value of the terminal state is 0
initialize 𝜋 to be 𝜖-greedy with respect to 𝑄

loop ▷ for all episodes
initialize and store 𝑆0
set 𝐴0 to be the action given by 𝜋 for 𝑆0
𝑡 ∶= 0
𝑇 ∶= ∞

repeat ▷ for all time steps
if 𝑡 < 𝑇 then

take action 𝑎 and receive the new state 𝑆𝑡+1 and the re-
ward 𝑅𝑡+1

if 𝑆𝑡+1 is terminal then
𝑇 ∶= 𝑡 + 1

else
set 𝑎 to be the action given by 𝜋 for 𝑆𝑡+1

end if
end if

𝜏 ∶= 𝑡 − 𝑛 + 1 ▷ time step whose approximation is now updated
if 𝜏 ≥ 0 then

𝐺 ∶= ∑min(𝜏+𝑛,𝑇)
𝑘=𝜏+1 𝛾𝑖−𝜏−1𝑅𝑖

if 𝜏 + 𝑛 < 𝑇 then
𝐺 ∶= 𝐺+ 𝛾𝑛𝑣(𝑆𝜏+𝑛)

end if
𝑄[𝑆𝜏 , 𝐴𝜏 ] ∶= 𝑄[𝑆𝜏 , 𝐴𝜏 ] + 𝛼(𝐺 −𝑄[𝑆𝜏 , 𝐴𝜏 ])
set 𝜋(⋅|𝑆𝜏) to be 𝜖-greedy with respect to 𝑄

end if
𝑡 ∶= 𝑡 + 1

until 𝜏 + 1 = 𝑇 ▷ corresponding to the final non-zero 𝐺,
𝐺 = 𝑅𝜏+1 = 𝑅𝑇
end loop
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Q-Learning

5.1 Introduction
In this chapter, variants of 𝑄-learning are presented.

5.2 Double Q-Learning
Since the target value in 𝑄-learning involves the maximum over the estimate
used for bootstrapping, a significant positive bias is introduced. It is often
call a maximization bias.

How can the maximization bias be overcome? One method is called
double learning. We note that having obtained one sample, the regular
algorithm, Algorithm 9, uses it both to determine the maximizing action
and to estimate its value. The idea of double learning is to partition the
samples into two sets and to use them to learn two independent estimates
𝑄1 and 𝑄2. One estimate, say 𝑄1, is used to find the maximizing action

𝑎∗ ∶= argmax
𝑎∈𝒜

𝑄1(𝑠, 𝑎);

the other estimate 𝑄2 is used to estimate its value

𝑄2(𝑠, 𝑎∗) = 𝑄2(𝑠, argmax
𝑎∈𝒜

𝑄1(𝑠, 𝑎)).

Then this estimate is unbiased in the sense that

𝔼[𝑄2(𝑠, 𝑎∗)] = 𝑞(𝑠, 𝑎∗).

The roles of 𝑄1 and 𝑄2 can of course then be switched.
In double learning, two estimates are calculated, which doubles the mem-

ory requirement. In each iteration, only one of the two approximations is
updated so that the amount of computation per iteration remains the same.
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The update for 𝑄1 is
𝑄1(𝑆𝑡, 𝐴𝑡) ∶= 𝑄1(𝑆𝑡, 𝐴𝑡)+𝛼𝑡(𝑅𝑡+1+𝛾𝑄2(𝑆𝑡+1, argmax

𝑎∈𝒜(𝑆𝑡+1)
𝑄1(𝑆𝑡+1, 𝑎))−𝑄1(𝑆𝑡, 𝐴𝑡)),

and the indices are switched in the update for 𝑄2.
In a double-learning algorithm, the choice whether 𝑄1 or 𝑄2 is updated

is usually performed randomly. The resulting algorithm is shown in Algo-
rithm 12.
Algorithm 12 double 𝑄-learning for calculating 𝑄 ≈ 𝑞∗ and 𝜋 ≈ 𝜋∗.

initialization:
choose learning rate 𝛼 ∈ (0, 1]
choose 𝜖 > 0
initialize 𝑄1[𝑠, 𝑎] ∈ ℝ and 𝑄2[𝑠, 𝑎] arbitrarily for all (𝑠, 𝑎) ∈ 𝒮 ×𝒜(𝑠)

except that the value of the terminal state is 0

loop ▷ for all episodes
initialize 𝑠
repeat ▷ for all time steps

choose action 𝑎 from 𝑠 using an (𝜖-greedy) policy derived from 𝑞
take action 𝑎 and receive the new state 𝑠′ and the reward 𝑟
if a random number chosen uniformly in [0, 1) is less than 1/2 then

𝑄1[𝑠, 𝑎] ∶= 𝑄1[𝑠, 𝑎] + 𝛼(𝑟 +
𝛾max𝑎∈𝒜(𝑠′)𝑄2[𝑠′, argmax𝑎∈𝒜(𝑠′)𝑄1[𝑠′, 𝑎)] − 𝑄1[𝑠, 𝑎])

else
𝑄2[𝑠, 𝑎] ∶= 𝑄2[𝑠, 𝑎] + 𝛼(𝑟 +

𝛾max𝑎∈𝒜(𝑠′)𝑄1[𝑠′, argmax𝑎∈𝒜(𝑠′)𝑄2[𝑠′, 𝑎)] − 𝑄2[𝑠, 𝑎])
end if
𝑠 ∶= 𝑠′

until 𝑠 is the terminal state and the episode is finished
end loop

5.3 Deep Q-Learning
In deep 𝑄-learning, the optimal action-state function is represented by an
artificial neural network. For example, in [3], a deep convolutional neural
network was used. Convolutional neural networks are especially well suited
for inputs that are images, which is the case in [3]. In [3], the state is the
input of the neural network and there is a separate output neuron for each
possible action. This has the advantage that the action-value function can
be evaluated for all action in one forward pass.

Since artificial neural networks are nonlinear function approximators,
convergence results are hard to obtain. In order to increase convergence
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speed or to ensure convergence at all, experience replay is usually used (cf.
Remark 7.4 and Remark 12.8).

In [3], a separate neural network was used to generate the episodes. At
regular intervals, i.e., after a fixed number of updates, the neural network
was copied and this fixed copy was used to generate the next updates. This
makes the algorithm more stable, since oscillations are prevented. In the
Atari 2600 games played in [3], two consecutive states 𝑆𝑡 and 𝑆𝑡+1 are highly
correlated hence oscillations are likely.

The algorithm in [3] is summarized in Algorithm 13.

Algorithm 13 deep 𝑄-learning for calculating 𝑄 ≈ 𝑞∗.
initialization:
initialize the replay memory 𝑀
initialize action-value function 𝑄𝜃 with weights 𝜃 randomly
initialize target action-value function �̂�𝜃 with weights 𝜃 randomly
initialize 𝑁 ∈ ℕ

loop ▷ for all episodes
initialize 𝑠
repeat ▷ for all time steps

choose action 𝑎 from 𝑠 using an (𝜖-greedy) policy derived from 𝑄𝜃
take action 𝑎 and receive the new state 𝑠′ and the reward 𝑟
store the transition (𝑠, 𝑎, 𝑟, 𝑠′) in the replay memory 𝑀
sample a random minibatch of transitions (𝑠𝑖, 𝑎𝑖, 𝑟𝑖+1, 𝑠𝑖+1) from𝑀
set the targets

𝑦𝑖 ∶= {𝑟𝑖, if 𝑠𝑖 is terminal state,
𝑟𝑖 + 𝛾max𝑎′∈𝒜 �̂�𝜃(𝑠𝑖+1, 𝑎′), otherwise

perform gradient descent step on (𝑦𝑖 −𝑄𝜃(𝑠𝑖, 𝑎𝑖))2
every 𝑁 steps reset �̂� ∶= 𝑄
𝑠 ∶= 𝑠′

until 𝑠 is the terminal state and the episode is finished
end loop

5.4 Bibliographical and Historical Remarks

Problems
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Chapter 6

On-Policy Prediction with
Approximation

6.1 Introduction
Starting in this chapter, we consider the case of infinite state sets 𝒮. Then
it is obviously not possible anymore to store the state-value function (or the
policy) in tabular form, but instead we have to approximate it. We write

̂𝑣𝑤(𝑠) ≈ 𝑣𝜋(𝑠)

for the approximation ̂𝑣𝑤 of the state-value function 𝑣𝜋 based on the a weight
vector 𝑤 ∈ 𝑊 ⊂ ℝ𝑑. Typically, the dimension of the weight vector is much
smaller than the dimension of the state space, i.e.,

𝑑 ≪ dim𝒮.

This implies that change one element of the weight vector changes the es-
timated value of many states, resulting in generalization. This effect has
advantages and disadvantages: it may make learning more efficient, but it
also may make it more difficult if the type of approximation used does not
support the kind of value functions required by the problem well, i.e., when
the kind of approximation prevents generalization.

So far, in the tabular methods we have discussed for finite state spaces,
the estimate for the value of a state was updated to be closer to a certain
target value and all other estimates remained unchanged. Now, when func-
tion approximation is employed, updating the estimate of a state may affect
the estimate values of many other states as well.

In principle, any kind of function approximation can be used. Whenever
a new sample, i.e., a state (and action) and an estimate of its value becomes
available, the function approximation can be updated globally. Of course,
approximation methods that support such online updates are especially suit-
able.

43



Chapter 6. On-Policy Prediction with Approximation

6.2 Stochastic Gradient and Semi-Gradient Meth-
ods

Before we can start to calculate the weights in the approximations of the
value functions, we must specify the optimization objective or the error we
seek to minimize. One of the most popular errors is the mean squared value
error

VE(𝑤) ∶= ∑
𝑠∈𝒮

𝜇𝜋(𝑠)(𝑣𝜋(𝑠) − ̂𝑣𝑤(𝑠))2,

where 𝜇𝜋 is the discounted state distribution (see Definition 7.1). The dis-
counted state distribution acts as weight for the squared differences in the
true and approximated values. Of course, other weights can be used when-
ever it makes sense to assign different importance to the states.

The goal is to find a global optimum 𝑤∗, i.e., a weight vector 𝑤∗ such that
VE(𝑤∗) ≤ VE(𝑤) for all 𝑤 ∈ 𝑊 ⊂ ℝ𝑑. It is sometimes possible to show that
a global optimum is found when linear function approximations are used,
but it becomes much harder in the case of nonlinear function approximation.

Short of finding a global optimum, the goal is to find a local optimum,
i.e., a weight vector 𝑤∗ such that VE(𝑤∗) ≤ VE(𝑤) holds for all 𝑤 in a
neighborhood of 𝑤∗.

The most popular method for function approximations is stochastic gra-
dient descent (sgd), and it is very well suited for online learning. In sgd, it
is assumed that the approximate value function ̂𝑣𝑤 is a differentiable func-
tion of the weight vector 𝑤. The weight vector calculated in each iteration is
denoted by 𝑤𝑡 for 𝑡 ∈ {0, 1, 2,…}. We assume for now that in each iteration
a new sample 𝑣𝜋(𝑆𝑡) becomes available having reached state 𝑆𝑡. sgd means
improving the weight vector 𝑤𝑡 by moving it slightly downhill with respect
to the error VE in the direction of the greatest change in the error at 𝑤𝑡.
This direction of greatest change is the gradient, and minimizing the error
means adding a small multiple of the negative gradient. This results in the
iteration

𝑤𝑡+1 ∶= 𝑤𝑡 −
1
2𝛼𝑡∇𝑤(𝑣𝜋(𝑆𝑡) − ̂𝑣𝑤𝑡

(𝑆𝑡))2 (6.1a)
= 𝑤𝑡 + 𝛼𝑡(𝑣𝜋(𝑆𝑡) − ̂𝑣𝑤𝑡

(𝑆𝑡))∇𝑤 ̂𝑣𝑤𝑡
(𝑆𝑡), (6.1b)

where the learning rate 𝛼𝑡 ∈ ℝ+. The sole purpose of the factor 1/2 in the
first line is to not have a factor 2 in the second line.

sgd is a stochastic gradient-descent method since the update is a random
variable because it depends on the random variable 𝑆𝑡. Over many samples
or iterations, the accumulated effect is to minimize the average of an objec-
tive function such as the mean squared value error. To ensure convergence,
the learning rate 𝛼𝑡 must tend to zero.

Unfortunately, the true value 𝑣𝜋(𝑆𝑡) is unknown, since 𝑣𝜋 is to be calcu-
lated. Therefore, in fact, we can only use a random variable 𝑈𝑡 instead of
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𝑣𝜋(𝑆𝑡) in the iteration. Hence the general sgd method for the prediction of
state values is the iteration

𝑤𝑡+1 ∶= 𝑤𝑡 + 𝛼𝑡(𝑈𝑡 − ̂𝑣𝑤𝑡
(𝑆𝑡))∇𝑤 ̂𝑣𝑤𝑡

(𝑆𝑡). (6.2)

If 𝑈𝑡 is an unbiased estimate of 𝑣𝜋(𝑆𝑡), i.e., if

𝔼[𝑈𝑡 ∣ 𝑆𝑡 = 𝑠] = 𝑣𝜋(𝑆𝑡)

for all times 𝑡 and if the learning rate 𝛼 satisfy the conditions (2.2) for
stochastic approximation, then the 𝑤𝑡 converge to a local optimum.

Equipped with the sgd method, we can now develop algorithms for
calculating 𝑤∗ based on different choices for the target value 𝑈𝑡.

Probably the most obvious choice for an unbiased estimate of 𝑣𝜋(𝑆𝑡) is
the Monte-Carlo target

𝑈𝑡 ∶= 𝐺𝑡.
Based on the convergence results just mentioned, the general sgd method in
conjunction with this estimate converges to a locally optimal approximation
of 𝑣𝜋(𝑆𝑡). In other words, the algorithm for the Monte-Carlo state-value
prediction can be shown to always find a locally optimal solution. The
resulting algorithm is shown in Algorithm 14. Note that the episode must
have ended so that 𝐺𝑡 can be calculated in each time step.

Algorithm 14 gradient mc prediction for calculating ̂𝑣𝑤 ≈ 𝑣𝜋 given the
policy 𝜋.

initialization:
choose a representation for the state-value function ̂𝑣𝑤
choose learning rate 𝛼𝑡 ∈ ℝ+

initialize state-value parameter 𝑤 ∈ 𝑊 ⊂ ℝ𝑑

loop ▷ for all episodes
generate an episode (𝑆0, 𝐴0, 𝑅1,… , 𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑇 ) following 𝜋
for 𝑡 ∈ (0, 1,… , 𝑇 − 1) do ▷ for all time steps

𝑤 ∶= 𝑤 + 𝛼𝑡(𝐺𝑡 − ̂𝑣𝑤(𝑆𝑡))∇ ̂𝑣𝑤(𝑆𝑡)
end for

end loop

Bootstrapping targets such as the 𝑛-step return 𝐺𝑡∶𝑡+𝑛, which build on
previously calculated approximations, do not provide the same convergence
guarantees. By the definition of bootstrapping, the target 𝑈𝑡 in a boot-
strapping method depends on the current weight vector 𝑤𝑡, which means
that the estimate is biased.

Bootstrapping methods are not even gradient-descent methods. This
becomes clear by considering the derivative calculated in (6.1). While the
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derivative of ̂𝑣𝑤𝑡
(𝑆𝑡) appears in the equation, in a bootstrapping method the

derivative of 𝑈𝑡(𝑤𝑡) ≈ 𝑣𝜋(𝑆𝑡) is nonzero, but does not appear in the equa-
tion. Because of this missing term, these methods are called semigradient
methods.

On the other hand, semigradient methods often learn significantly faster
and they converge reliably in the important case of linear function approxi-
mation. Additionally, they enable online learning in contrast to mc methods,
which have to wait till the end of an episode.

The most straightforward semigradient method is probably the semigra-
dient TD(0) method, which uses the target

𝑈𝑡 ∶= 𝑅𝑡+1 + 𝛾 ̂𝑣𝑤𝑡
(𝑆𝑡+1).

The resulting algorithm is shown in Algorithm 15.

Algorithm 15 semigradient TD(0) prediction for calculating ̂𝑣𝑤 ≈ 𝑣𝜋 given
the policy 𝜋.

initialization:
choose a representation for the state-value function ̂𝑣𝑤
choose learning rate 𝛼𝑡 ∈ ℝ+

initialize state-value parameter 𝑤 ∈ 𝑊 ⊂ ℝ𝑑

loop ▷ for all episodes
initialize 𝑠
repeat ▷ for all time steps

choose action 𝑎 using 𝜋
take action 𝑎 and receive the new state 𝑠′ and the reward 𝑟
𝑤 ∶= 𝑤 + 𝛼𝑡(𝑟 + 𝛾 ̂𝑣𝑤(𝑠′) − ̂𝑣𝑤(𝑠))∇ ̂𝑣𝑤(𝑠)
𝑠 ∶= 𝑠′

until 𝑠 is the terminal state and the episode is finished
end loop

6.3 Linear Function Approximation
One of the most important cases when approximating the state-value func-
tion is the case of linear function approximation. Then the state-value func-
tion 𝑣𝜋 is approximated by

𝑣𝜋(𝑠) ≈ ̂𝑣𝑤(𝑠) ∶= 𝑤⊤𝑥(𝑠) =
𝑑

∑
𝑘=1

𝑤𝑖𝑥𝑖(𝑠). (6.3)

The vector valued function

𝑥∶ 𝒮 → ℝ𝑑, 𝑥(𝑠) = ⎛⎜
⎝

𝑥1(𝑠)
⋮

𝑥𝑑(𝑠)
⎞⎟
⎠
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gives the feature vectors or simply features, whose expedient choice is crucial.
In other words, the features are the basis functions that span the sub-

space of all approximations of 𝑣𝑤. Unfortunately, the subspace is often
rather small, i.e., 𝑑 ≪ dim𝒮, due to problem size or computational limi-
tations. Obviously, the choice of the subspace (which is equivalent to the
choice of the features) is instrumental in being able to calculate good ap-
proximations to 𝑣𝜋 at all.

When using linear approximations, the sgd iteration simplifies. The gra-
dient of the approximated state-value function is just the feature function,
i.e., ∇𝑤 ̂𝑣𝑤(𝑠) = 𝑥(𝑠). Hence the update (6.2) becomes

𝑤𝑡+1 ∶= 𝑤𝑡 + 𝛼𝑡(𝑈𝑡 − ̂𝑣𝑤𝑡
(𝑆𝑡))𝑥(𝑆𝑡).

Almost all convergence results that are known are for the case of linear
function approximation. In the linear case, there is only one global opti-
mum or – more precisely – a set of equally good optima. This means that
convergence to a local optimum implies global convergence.

For example, the gradient mc algorithm Algorithm 14 when combined
with linear function approximation converges to a local minimum of the
mean squared value error if the learning rate satisfies the usual conditions
(2.2).

The semigradient algorithm Algorithm 15 also converges, but in general
to a different limit, and this fact does not follow from the considerations
above.

Assuming that the algorithm converges, we can find the limit using the
following consideration. Using the notation 𝑥𝑡 ∶= 𝑥(𝑆𝑡), the iteration is

𝑤𝑡+1 ∶= 𝑤𝑡 + 𝛼𝑡(𝑅𝑡+1 + 𝛾𝑤⊤
𝑡 𝑥𝑡+1 −𝑤⊤

𝑡 𝑥𝑡)𝑥𝑡
= 𝑤𝑡 + 𝛼𝑡(𝑅𝑡+1𝑥𝑡 − 𝑥𝑡(𝑥𝑡 − 𝛾𝑥𝑡+1)⊤𝑤𝑡).

Applying the expected value to both sides, we find

𝔼[𝑤𝑡+1 ∣ 𝑤𝑡] = 𝑤𝑡 + 𝛼𝑡(𝑏 − 𝐴𝑤𝑡),
𝐴 ∶= 𝔼[𝑥𝑡(𝑥𝑡 − 𝛾𝑥𝑡+1)⊤] ∈ ℝ𝑑×𝑑,
𝑏 ∶= 𝔼[𝑅𝑡+1𝑥𝑡] ∈ ℝ𝑑.

Hence, if the 𝑤𝑡 converge, the equation 𝐴𝑤𝑡 = 𝑏 must hold, which means
that the possible fixed point is

𝑤td ∶= 𝐴−1𝑏, (6.4)

which is called the td fixed point.
Theorem 6.1. Suppose that 𝛾 < 1, that ⟨𝛼𝑡⟩𝑡∈ℕ satisfies (2.2), that the
feature vectors 𝑥(𝑠) are a basis of ℝ𝑑, and that the state distribution is
positive for all states.
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Then the semigradient algorithm Algorithm 15 with the linear approxima-
tion (6.3) converges to the td fixed point 𝑤td defined in (6.4) with probability
one.
Sketch of the proof. The calculation above shows that

𝔼[𝑤𝑡+1 ∣ 𝑤𝑡] = (𝐼 − 𝛼𝑡𝐴)𝑤𝑡 + 𝛼𝑏.
Therefore we define the function

𝐾 ∶ ℝ𝑑 → ℝ𝑑, 𝐾(𝑤) ∶= (𝐼 − 𝛼𝐴)𝑤 + 𝛼𝑏.
In order to be able to use the Banach fixed-point theorem, we will show that
𝐾 is a contraction for sufficiently small 𝛼 ∈ ℝ+. It is a contraction if

‖𝐾(𝑣2) − 𝐾(𝑣1)‖ ≤ ‖𝐼 − 𝛼𝐴‖‖𝑣2 − 𝑣1‖ ≤ 𝜅‖𝑣2 − 𝑣1‖ ∃𝜅 ∈ ℝ+.
Therefore it suffices to show that 𝐴 is positive definite, i.e., 𝑣⊤𝐴𝑣 > 0 for
all 𝑣 ∈ ℝ𝑑 ⧵ {0}.

We can write the matrix 𝐴 as
𝐴 = ∑

𝑠∈𝒮
𝜇(𝑠)∑

𝑎∈𝒜
𝜋(𝑎|𝑠)∑

𝑟∈ℛ
∑
𝑠′∈𝒮

𝑝(𝑟, 𝑠′ ∣ 𝑠, 𝑎)𝑥(𝑠)(𝑥(𝑠) − 𝛾𝑥(𝑠′))⊤

= ∑
𝑠∈𝒮

𝜇(𝑠)∑
𝑠′∈𝒮

𝑝(𝑠′|𝑠)𝑥(𝑠)(𝑥(𝑠) − 𝛾𝑥(𝑠′))⊤

= ∑
𝑠∈𝒮

𝜇(𝑠)𝑥(𝑠)(𝑥(𝑠) − 𝛾 ∑
𝑠′∈𝒮

𝑝(𝑠′|𝑠)𝑥(𝑠′))⊤

= 𝑋⊤𝐷(𝐼 − 𝛾𝑃)𝑋,
where 𝜇𝜋 is the state distribution under 𝜋, 𝐷 is the diagonal matrix with
the entries 𝜇(𝑠), 𝑃 is the dim𝒮×dim𝒮 matrix of the transition probabilities
𝑝(𝑠′|𝑠) from state 𝑠 to state 𝑠′ under 𝜋, and 𝑋 is the dim𝒮× 𝑑 matrix that
contains the 𝑥(𝑠) as rows.

Since 𝑋 is a basis change, it suffices to show that 𝐷(𝐼 − 𝛾𝑃) is positive
definite. It can shown that it suffices to show that all of its column sums
and all of its row sums are positive.

The row sums of 𝐷(𝐼 − 𝛾𝑃) are all positive, since 𝑃 is a matrix of
probabilities and 𝛾 < 1.

To show that the columns sums of𝐷(𝐼−𝛾𝑃) are all positive, we calculate
them as

1⊤𝐷(1 − 𝛾𝑃) = 𝜇⊤(𝐼 − 𝛾)𝑃
= 𝜇⊤ − 𝛾𝜇⊤𝑃
= 𝜇⊤ − 𝛾𝜇⊤

= (1 − 𝛾)𝜇⊤.
Each entry of this vector is positive, since the state distribution is positive
everywhere by assumption.
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Since the optimal weight vector 𝑤∗ and the td fixed point 𝑤td are differ-
ent in general, the question arises how close they are. The following theorem
means that the mean square value error of the td fixed point is always within
a factor of 1/(1 − 𝛾) of the lowest possible error.

Theorem 6.2. The td fixed point 𝑤td in (6.4) satisfies the inequality

VE(𝑤td) ≤
1

1 − 𝛾 min
𝑤∈ℝ𝑑

VE(𝑤).

6.4 Features for Linear Methods
6.4.1 Polynomials
But consider Weierstrass approximation theorem.

6.4.2 Fourier Basis
𝑖th feature:

𝑥𝑖(𝑠) ∶= cos(𝜋𝑠⊤𝑐𝑖),
where 𝑐𝑖 is a constant vector.

6.4.3 Coarse Coding
Cover state space with circles. A feature has value 1 (or is said to be present),
if it inside the corresponding circle. Otherwise it has value 0 (and is said to
be absent).

6.4.4 Tile Coding
Cover state space with tiles. First construct tiling (a partition), the shift
the tilings.

6.4.5 Radial Basis Functions
The features are

𝑥𝑖(𝑠) ∶= exp(−‖𝑠 − 𝑐𝑖‖2
2𝜎2

𝑖
) ,

where 𝑐𝑖 is called the center state and 𝜎𝑖 is called the feature width.

6.5 Nonlinear Function Approximation
6.5.1 Artificial Neural Networks
See bonus chapter.
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6.5.2 Memory Based Function Approximation
Save training samples in memory, use a set of samples to compute the value
estimate only when required. Also called lazy learning.

6.5.3 Kernel-Based Function Approximation
We denote the set of all stored examples by 𝐸. Then the state-value function
is approximated as

̂𝑣𝐸(𝑠) ∶= ∑
𝑠′∈𝐸

𝑘(𝑠, 𝑠′)𝑔(𝑠′),

where 𝑔(𝑠′) is the target for state 𝑠′ and 𝑘 ∶ 𝒮 × 𝒮 → ℝ is a kernel function
that assigns a weight to the known data about state 𝑠′ when asked about
state 𝑠.

6.6 Bibliographical and Historical Remarks
[11]

Problems
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Chapter 7

Policy-Gradient Methods

7.1 Introduction
A large class of reinforcement-learning methods are action-value methods,
i.e., methods that calculate action values and then choose the best action
based on these action values. On the other hand, we present methods for
calculating policies more directly in this chapter. The policies here are
parameterized, i.e., we write them in the form

𝜋 ∶ 𝒜(𝑠) × 𝒮 × Θ → [0, 1],
𝜋𝜃(𝑎 ∣ 𝑠) ∶= 𝜋(𝑎 ∣ 𝑠, 𝜃) ∶= ℙ{𝐴𝑡 = 𝑎 ∣ 𝑆𝑡 = 𝑠, 𝜃𝑡 = 𝜃},

where the parameter 𝜃 ∈ Θ ⊂ ℝ𝑑′ is a vector. We seek a parameter that
corresponds to an optimal policy.

Commonly, the parameters are learned such that a scalar performance
measure called

𝐽 ∶ Θ → ℝ,
defined on the parameters, is maximized. A leading example is the definition

𝐽(𝜃) ∶= 𝔼[𝑣𝜋𝜃
(𝑆0) ∣ 𝑆0 ∼ 𝜄],

where 𝑆0 ∼ 𝜄 is the initial state chosen according to the probability distri-
bution 𝜄.

The general assumption is that the policy 𝜋 and the performance mea-
sure 𝐽 are differentiable with respect to 𝜃 such that gradient based optimiza-
tion can be employed. Such methods are called policy-gradient methods. The
performance can be maximized for example by using stochastic gradient as-
cent with respect to the performance measure 𝐽 , i.e., we define the iteration

𝜃𝑡+1 ∶= 𝜃𝑡 + 𝛼𝑡𝔼[∇𝜃𝐽(𝜃𝑡)].

The expected value of the gradient of the performance measure 𝐽 in the last
term is usually approximated.
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The question whether action-value or policy-gradient methods are prefer-
able depends on the problem. It may be the case that the action-value func-
tion has a simpler structure and is therefore easier to learn, or it may be the
case that the policy itself has a simpler structure.

7.2 Finite and Infinite Action Sets
7.2.1 Finite Action Sets
If the action sets 𝒜(𝑠) are finite, then a common form of the policy is based
on the so-called preference function

ℎ∶ 𝒮 ×𝒜(𝑠) × Θ → ℝ.

The preferences of state-action pairs (𝑠, 𝑎) are translated into probabilities
and hence into a policy via the exponential soft-max function

𝜋(𝑎 ∣ 𝑠, 𝜃) ∶= exp(ℎ(𝑠, 𝑎, 𝜃))
∑𝑎′∈𝒜(𝑠) exp(ℎ(𝑠, 𝑎′, 𝜃))

.

Many choices for the representation of the preference functions are pos-
sible. Two popular ones are the following.

• The preference function is an artificial neural network. Then the pa-
rameter vector 𝜃 ∈ Θ ⊂ ℝ𝑑′ contains all weights and biases of the
artificial neural network.

• The preference function has the linear form

ℎ(𝑠, 𝑎, 𝜃) ∶= 𝜃⊤𝑥(𝑠, 𝑎),

where the feature function

𝑥∶ 𝒮 ×𝒜(𝑠) → ℝ𝑑′

yields the feature vectors.

7.2.2 Infinite Action Sets
If the action sets 𝒜(𝑠) are infinite, it is possible to simplify the problem
of learning the probabilities of all actions by reducing it to learning the
parameters of a probability distribution. The parameters of the distribution
are represented by functions. For example, we define a policy of the form

𝜋(𝑎 ∣ 𝑠, 𝜃) ∶= 1√
2𝜋𝜎(𝑠, 𝜃)

exp(−(𝑎 − 𝜇(𝑠, 𝜃))2
2𝜎(𝑠, 𝜃)2 ) ,
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7.3. The Policy-Gradient Theorem

where now the two functions 𝜇∶ 𝒮×Θ → ℝ and 𝜎 ∶ 𝒮×Θ → ℝ+ need to be
learned. To do that, we split the parameter vector 𝜃 ∈ Θ into two vectors
𝜃𝜇 and 𝜃𝜎, i.e., 𝜃 = (𝜃𝜇, 𝜃𝜎)⊤, and write the functions 𝜇 and 𝜎 as a linear
and a positive function

𝜇(𝑠, 𝜃) ∶= 𝜃⊤𝜇𝑥𝜇(𝑠),
𝜎(𝑠, 𝜃) ∶= exp(𝜃⊤𝜎𝑥𝜎(𝑠)),

respectively, where the features 𝑥𝜇 and 𝑥𝜎 are vector valued functions as
usual.

Representing policies as the soft-max of preferences for actions makes
it possible to approximate deterministic policies, which is not immediately
possible when using 𝜖-greedy policies. If the optimal policy is deterministic,
the preferences of the optimal actions become unbounded, at least if this
behavior is allowed by the kind of parameterization used.

Action preferences can represent optimal stochastic policies well in the
sense that the probabilities of actions may be arbitrary. This is in contrast
to action-value methods and it is an important feature whenever the optimal
policy is stochastic such as in rock-paper-scissors and poker.

7.3 The Policy-Gradient Theorem
Before stating the policy-gradient theorem, we define the (discounted) state
distribution. In the case of an episodic environment or learning task, we
consider discount rates 𝛾 < 1. In the case of a continuing environment or
learning task, it can be shown that a discount rate 𝛾 < 1 only results in
the factor 1/(1 − 𝛾) in the performance measure and hence we assume that
𝛾 = 1 in this case without loss of generality.

Definition 7.1 (discounted state distribution). The discounted state distri-
bution

𝜇𝜋 ∶ 𝒮 → [0, 1],
𝜇𝜋(𝑠) ∶= 𝔼all episodes[ lim𝑡→∞

ℙ{𝑆𝑡 = 𝑠 ∣ 𝑆0 ∼ 𝜄, 𝐴0,… ,𝐴𝑡−1 ∼ 𝜋}]

is the probability of being in state 𝑠 in all episodes under a given policy 𝜋 ∈ 𝒫
and a given initial state distribution 𝜄 and discounted by 𝛾 in the episodic
case.

In order to simplify notation, we write 𝜇𝜋 instead of 𝜇𝜋,𝜄,𝛾.
By definition, 𝜇𝜋(𝑠) ≥ 0 for all 𝑠 ∈ 𝒮 and ∑𝑠∈𝒮 𝜇𝜋(𝑠) = 1. We discount

the state distribution by the discount rate 𝛾, because this is the form that
is necessary for the calculations in Theorem 7.3 below. It is also consistent
with the appearance of the discount rate in the definitions of the state-
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and action-value functions, which are also used in the calculations in the
theorem.

If the environment or learning task is continuing, the state distribution
is just the stationary distribution under the policy 𝜋. If the environment or
learning task is episodic, however, the distribution of the initial distribution
of the states plays a role as seen in the following lemma, which gives the
state distribution in both cases.

Lemma 7.2 (discounted state distribution). If the environment is continu-
ing, the state distribution is the stationary distribution under the policy 𝜋.

If the environment is episodic, the discounted state distribution is given
by

𝜇𝜋(𝑠) =
𝜂(𝑠)

∑𝑠′∈𝒮 𝜂(𝑠′)
∀𝑠 ∈ 𝒮,

where the 𝜂(𝑠) are the solution of the system of equations

𝜂(𝑠) = 𝜄(𝑠) + 𝛾 ∑
𝑠′∈𝒮

𝜂(𝑠′) ∑
𝑎∈𝒜(𝑠)

𝜋(𝑎|𝑠′)𝑝(𝑠 ∣ 𝑠′, 𝑎) ∀𝑠 ∈ 𝒮,

where 𝜄 ∶ 𝒮 → [0, 1] is the initial distribution of the states in an episode.

To simplify notation, we write 𝜂 instead of 𝜂𝜋 or 𝜂𝜋,𝜄,𝛾.

Proof. We start by noting that 𝜂(𝑠) is the average number of time steps
spent in state 𝑠 over all episodes discounted by 𝛾. It consists of two terms,
namely the probability 𝜄(𝑠) to start in state 𝑠 and the discounted average
number of times the state 𝑠 occurs coming from all other states 𝑠′ ∈ 𝒮.

This linear system of equations has a unique solution, yielding the 𝜂(𝑠).
In order to find the state distribution 𝜇𝜋(𝑠), the 𝜂(𝑠) must be scaled by the
mean length

𝐿 ∶= ∑
𝑠∈𝒮

𝜂(𝑠) (7.1)

of all episodes.

The following theorem [12] is fundamental for policy-gradient methods.
In the continuing case, the performance measure is

𝑟(𝜋𝜃) ∶= lim
ℎ→∞

1
ℎ

ℎ
∑
𝑡=1

𝔼[𝑅𝑡 ∣ 𝑆0 ∼ 𝜄, 𝐴0,… ,𝐴𝑡−1 ∼ 𝜋𝜃],

which is assumed to exist and to be independent of the initial state distribu-
tion 𝜄, i.e., the stochastic process defined by the policy 𝜋𝜃 and the transition
probability 𝑝 is assumed to be ergodic.
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7.3. The Policy-Gradient Theorem

Theorem 7.3 (policy-gradient theorem). Suppose that the performance
measure is defined as

𝐽(𝜃) ∶= {𝔼[𝑣𝜋𝜃
(𝑆0) ∣ 𝑆0 ∼ 𝜄], episodic environment,

𝑟(𝜋𝜃), continuing environment,

where 𝑆0 ∼ 𝜄 is the initial state chosen according to the probability distribu-
tion 𝜄. Then its gradient is given by

∇𝜃𝐽(𝜃) = 𝐿∑
𝑠∈𝒮

𝜇𝜋𝜃
(𝑠) ∑

𝑎∈𝒜(𝑠)
𝑞𝜋𝜃

(𝑠, 𝑎)∇𝜃𝜋𝜃(𝑎 ∣ 𝑠, 𝜃),

where
𝐿 ∶= {mean episode length, episodic environment,

1, continuing environment
and 𝜇 is the state distribution.

Proof. We prove the episodic case first and start by differentiating the state-
value function 𝑣𝜋𝜃

. By the definitions of the value functions 𝑣 and 𝑞, we have

∇𝜃𝑣𝜋𝜃
(𝑠) = ∇𝜃( ∑

𝑎∈𝒜(𝑠)
𝜋(𝑎 ∣ 𝑠, 𝜃)𝑞𝜋𝜃

(𝑠, 𝑎)) ∀𝑠 ∈ 𝒮.

By (2.10), we find

∇𝜃𝑣𝜋𝜃
(𝑠) = ∑

𝑎∈𝒜(𝑠)
(∇𝜃𝜋(𝑎 ∣ 𝑠, 𝜃)𝑞𝜋𝜃

(𝑠, 𝑎)

+ 𝜋(𝑎 ∣ 𝑠, 𝜃)∇𝜃 ∑
𝑠′∈𝒮

∑
𝑟∈ℛ

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎)(𝑟 + 𝛾𝑣𝜋𝜃
(𝑠′))) ∀𝑠 ∈ 𝒮,

which simplifies to

∇𝜃𝑣𝜋𝜃
(𝑠) = ∑

𝑎∈𝒜(𝑠)
(∇𝜃𝜋(𝑎 ∣ 𝑠, 𝜃)𝑞𝜋𝜃

(𝑠, 𝑎)

+ 𝛾𝜋(𝑎 ∣ 𝑠, 𝜃)∑
𝑠′∈𝒮

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎)∇𝜃𝑣𝜋𝜃
(𝑠′)) ∀𝑠 ∈ 𝒮.

Performing a second time step by applying the recursive formula we just
found to ∇𝜃𝑣𝜋𝜃

(𝑠′), we find

∇𝜃𝑣𝜋𝜃
(𝑠) = ∑

𝑎∈𝒜(𝑠)
(∇𝜃𝜋(𝑎 ∣ 𝑠, 𝜃)𝑞𝜋𝜃

(𝑠, 𝑎)

+ 𝛾𝜋(𝑎 ∣ 𝑠, 𝜃)∑
𝑠′∈𝒮

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎) ∑
𝑎′∈𝒜(𝑠)

(∇𝜃𝜋(𝑎′ ∣ 𝑠′, 𝜃)𝑞𝜋𝜃
(𝑠′, 𝑎′)
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+ 𝛾𝜋(𝑎′ ∣ 𝑠′, 𝜃) ∑
𝑠″∈𝒮

𝑝(𝑠″, 𝑟 ∣ 𝑠′, 𝑎′)∇𝜃𝑣𝜋𝜃
(𝑠″))) ∀𝑠 ∈ 𝒮.

Hence the recursive expansion of this formula can be written as

∇𝜃𝑣𝜋𝜃
(𝑠) = ∑

𝑠′∈𝒮

∞
∑
𝑘=0

𝛾𝑘ℙ{𝑠′ ∣ 𝑠, 𝑘, 𝜋} ∑
𝑎∈𝒜(𝑠′)

∇𝜃𝜋(𝑎 ∣ 𝑠′, 𝜃)𝑞𝜋𝜃
(𝑠′, 𝑎),

where ℙ{𝑠′ ∣ 𝑠, 𝑘, 𝜋} is the probability of transitioning to state 𝑠′ after
following policy 𝜋 for 𝑘 steps after starting from state 𝑠.

The gradient of the performance measure 𝐽 thus becomes

∇𝜃𝐽(𝜃) ∶= ∇𝜃𝔼[𝑣𝜋𝜃
(𝑆0) ∣ 𝑆0 ∼ 𝜄]

= 𝔼[∑
𝑠∈𝒮

∞
∑
𝑘=0

𝛾𝑘ℙ{𝑠 ∣ 𝑆0, 𝑘, 𝜋} ∑
𝑎∈𝒜(𝑠)

∇𝜃𝜋(𝑎 ∣ 𝑠, 𝜃)𝑞𝜋𝜃
(𝑠, 𝑎) ∣ 𝑆0 ∼ 𝜄]

= ∑
𝑠∈𝒮

𝜂(𝑠) ∑
𝑎∈𝒜(𝑠)

∇𝜃𝜋(𝑎 ∣ 𝑠, 𝜃)𝑞𝜋𝜃
(𝑠, 𝑎)

= 𝐿∑
𝑠∈𝒮

𝜂(𝑠)
𝐿 ∑

𝑎∈𝒜(𝑠)
∇𝜃𝜋(𝑎 ∣ 𝑠, 𝜃)𝑞𝜋𝜃

(𝑠, 𝑎)

= 𝐿∑
𝑠∈𝒮

𝜇𝜋𝜃
(𝑠) ∑

𝑎∈𝒜(𝑠)
∇𝜃𝜋(𝑎 ∣ 𝑠, 𝜃)𝑞𝜋𝜃

(𝑠, 𝑎),

where we have used the definition of 𝜂(𝑠) in Lemma 7.2 and (7.1).
In the continuing case, similar calculations for the differential return

𝐺𝑡 ∶=
∞
∑
𝑘=1

(𝑅𝑡+𝑘 − 𝑟(𝜋𝜃))

can be done.

Interestingly enough, although the performance measure depends on the
state distribution which depends on the policy parameter 𝜃, the derivative
of the state distribution does not appear in the expression found in the
policy-gradient theorem. This is the usefulness of the theorem.
Remark 7.4 (experience replay). The expression for the gradient of the per-
formance measure found in the theorem includes the state distribution 𝜇 and
hence motivates experience replay. Experience replay is a method which
keeps a cache of states and actions that have been visited and which are
replayed during learning in order to ensure that the whole space is sampled
in an equidistributed manner. Cf. Remark 12.8.
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7.4 Monte-Carlo Policy-Gradient Method: rein-
force

Having the gradient of the performance measure available from Theorem 7.3,
we can use gradient based stochastic optimization. The most straightforward
way is the iteration

𝜃𝑡+1 ∶= 𝜃𝑡 + 𝛼 ∑
𝑎∈𝒜(𝑆𝑡)

̂𝑞𝑤(𝑆𝑡, 𝑎)∇𝜃𝜋𝜃(𝑎 ∣ 𝑆𝑡, 𝜃),

where ̂𝑞𝑤 is an approximation of 𝑞𝜋𝜃
and parameterized by a vector 𝑤 ∈ ℝ𝑑.

This iteration is called an all-actions method.
The more classical reinforce algorithm is derived as follows. We start

from state 𝑆𝑡 in time step 𝑡 and use Theorem 7.3 to write

∇𝜃𝐽(𝜃) = 𝐿𝔼𝜋𝜃
[𝛾𝑡 ∑

𝑎∈𝒜(𝑆𝑡)
𝑞𝜋𝜃

(𝑠, 𝑎)∇𝜃𝜋𝜃(𝑎 ∣ 𝑠, 𝜃)]

= 𝐿𝔼𝜋𝜃
[𝛾𝑡 ∑

𝑎∈𝒜(𝑆𝑡)
𝜋𝜃(𝑎 ∣ 𝑆𝑡, 𝜃)𝑞𝜋𝜃

(𝑆𝑡, 𝑎)
∇𝜃𝜋𝜃(𝑎 ∣ 𝑆𝑡, 𝜃)
𝜋𝜃(𝑎 ∣ 𝑆𝑡, 𝜃)

],

since the discounted state distribution 𝜇𝜋𝜃
includes a factor of 𝛾 for each

time step. Next, we replace the sum over all actions by the sample 𝐴𝑡 ∼ 𝜋𝜃.
Then the gradient of the performance measure is approximately proportional
to

∇𝜃𝐽(𝜃) ≈ 𝔼𝜋𝜃
[𝛾𝑡𝑞𝜋𝜃

(𝑆𝑡, 𝐴𝑡)
∇𝜃𝜋𝜃(𝐴𝑡 ∣ 𝑆𝑡, 𝜃)
𝜋𝜃(𝐴𝑡 ∣ 𝑆𝑡, 𝜃)

].

Having selected the action 𝐴𝑡, we use Definition 2.8 to find

∇𝜃𝐽(𝜃) ≈ 𝔼𝜋𝜃
[𝛾𝑡𝐺𝑡

∇𝜃𝜋𝜃(𝐴𝑡 ∣ 𝑆𝑡, 𝜃)
𝜋𝜃(𝐴𝑡 ∣ 𝑆𝑡, 𝜃)

].

This yields the gradient used in the reinforce update

𝜃𝑡+1 ∶= 𝜃𝑡 + 𝛼𝛾𝑡𝐺𝑡
∇𝜃𝜋𝜃(𝐴𝑡 ∣ 𝑆𝑡, 𝜃𝑡)
𝜋𝜃(𝐴𝑡 ∣ 𝑆𝑡, 𝜃𝑡)

= 𝜃𝑡 + 𝛼𝛾𝑡𝐺𝑡∇𝜃 ln𝜋𝜃(𝐴𝑡 ∣ 𝑆𝑡, 𝜃𝑡).

Since the return 𝐺𝑡 until the end of an episode is used as the target, this is
an mc method.

The algorithm for this update is shown in Algorithm 16.
reinforce is a stochastic gradient ascent method. By the construc-

tion based on Theorem 7.3, the expected update over time is in the same
direction as the performance measure 𝐽 . Under the standard stochastic ap-
proximation conditions (2.2), the algorithm converges to a local optimum.
On the other hand, reinforce is a mc algorithm and thus may be of high
variance.
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Algorithm 16 reinforce for calculating 𝜋𝜃 ≈ 𝜋∗.
initialization:
choose a representation the policy 𝜋𝜃
choose learning rate 𝛼 ∈ ℝ+

initialize policy parameter 𝜃 ∈ Θ ⊂ ℝ𝑑′

loop ▷ for all episodes
generate an episode (𝑆0, 𝐴0, 𝑅1,… , 𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑇 ) following 𝜋𝜃
for 𝑡 ∈ (0, 1,… , 𝑇 − 1) do ▷ for all time steps

𝐺 ∶= ∑𝑇
𝑘=𝑡+1 𝛾𝑘−𝑡−1𝑅𝑘

𝜃 ∶= 𝜃 + 𝛼𝛾𝑡𝐺∇𝜃 ln𝜋𝜃(𝐴𝑡 ∣ 𝑆𝑡, 𝜃)
end for

end loop

return 𝜃

7.5 Monte-Carlo Policy-Gradient Method: rein-
force with Baseline

The right side in Theorem 7.3 can be changed by subtracting an arbitrary
so-called baseline 𝑏, a function or a random variable of the state, from the
action-value function, i.e.,

∇𝜃𝐽(𝜃) = 𝐿∑
𝑠∈𝒮

𝜇𝜋𝜃
(𝑠) ∑

𝑎∈𝒜(𝑠)
𝑞𝜋𝜃

(𝑠, 𝑎)∇𝜃𝜋𝜃(𝑎 ∣ 𝑠, 𝜃)

= 𝐿∑
𝑠∈𝒮

𝜇𝜋𝜃
(𝑠) ∑

𝑎∈𝒜(𝑠)
(𝑞𝜋𝜃

(𝑠, 𝑎) − 𝑏(𝑠))∇𝜃𝜋𝜃(𝑎 ∣ 𝑠, 𝜃).

The last equation holds true because

∑
𝑎∈𝒜(𝑠)

𝑏(𝑠)∇𝜃𝜋𝜃(𝑎 ∣ 𝑠, 𝜃) = 𝑏(𝑠)∇𝜃 ∑
𝑎∈𝒜(𝑠)

𝜋𝜃(𝑎 ∣ 𝑠, 𝜃)
⏟⏟⏟⏟⏟⏟⏟

=1

= 0.

With this change, the update becomes

𝜃𝑡+1 ∶= 𝜃𝑡 + 𝛼𝛾𝑡(𝐺𝑡 − 𝑏(𝑆𝑡))∇𝜃 ln𝜋𝜃(𝐴𝑡 ∣ 𝑆𝑡, 𝜃𝑡).

What is the purpose of adding a baseline? It leaves the expected value
of the updates unchanged, but it is a method to reduce their variance. The
natural choice is an approximation of the expected value of 𝐺𝑡, i.e., the
state-value function. This approximation

̂𝑣𝑤(𝑠) ≈ 𝑣𝜋𝜃
(𝑠)
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of the state-value function 𝑣𝜋𝜃
(𝑠), where 𝑤 ∈ 𝑊 ⊂ ℝ𝑑 is a parameter vec-

tor, can be calculated by any suitable method, but since reinforce is an
mc method, an mc method is used for calculating the approximation in
Algorithm 17 as well.

Algorithm 17 reinforce with baseline for calculating 𝜋𝜃 ≈ 𝜋∗.
initialization:
choose a representation for the policy 𝜋𝜃
choose a representation for the state-value function ̂𝑣𝑤
choose learning rate 𝛼𝜃 ∈ ℝ+

choose learning rate 𝛼𝑤 ∈ ℝ+

initialize policy parameter 𝜃 ∈ Θ ⊂ ℝ𝑑′

initialize state-value parameter 𝑤 ∈ 𝑊 ⊂ ℝ𝑑

loop ▷ for all episodes
generate an episode (𝑆0, 𝐴0, 𝑅1,… , 𝑆𝑇−1, 𝐴𝑇−1, 𝑅𝑇 ) following 𝜋𝜃
for 𝑡 ∈ (0, 1,… , 𝑇 − 1) do ▷ for all time steps

𝐺 ∶= ∑𝑇
𝑘=𝑡+1 𝛾𝑘−𝑡−1𝑅𝑘

𝛿 ∶= 𝐺 − ̂𝑣𝑤(𝑆𝑡)
𝑤 ∶= 𝑤 + 𝛼𝑤𝛿∇𝑤 ̂𝑣𝑤(𝑆𝑡)
𝜃 ∶= 𝜃 + 𝛼𝜃𝛾𝑡𝛿∇𝜃 ln𝜋𝜃(𝐴𝑡 ∣ 𝑆𝑡, 𝜃)

end for
end loop

return 𝜃 and 𝑤

The general rule of thumb for choosing the learning rate 𝛼𝑤 is

𝛼𝑤 ∶= 0.1
𝔼[‖∇𝑤 ̂𝑣𝑤(𝑆𝑡)‖2𝜇]

,

which is updated while the algorithm runs. Unfortunately, no such general
rule is available for the learning rate 𝛼𝜃, since the learning rate depends on
the range of the rewards and on the parameterization of the policy.

reinforce with baselines is unbiased and its approximation of an opti-
mal policy converges to a local minimum. As an mc method, it converges
slowly with high variance and inconvenient to implement for continuing en-
vironments or learning tasks.

7.6 Temporal-Difference Policy-Gradient Methods:
Actor-Critic Methods

reinforce with baseline is an mc method, since the target value in the
update is the return till the end of the episode. In other words, no boot-
strapping is performed, i.e., no previous approximation of a value function
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is used to update the policy. Although the state-value function is used in
the iteration, it is used to only for the state that is currently being updated;
it serves for variance reduction, not for bootstrapping.

Bootstrapping (e.g., by going from mc to td methods) introduces a bias.
Still, this is often useful as it reduces the variance in the value function
or policy and hence accelerates learning. Going from mc methods to td
methods is analogous to going from reinforce with baseline to actor-critic
methods. Just as td methods, actor-critic methods use the return calculated
over a certain number of time steps; the simplest case being to use the return
𝐺𝑡∶𝑡+1 using only one time step.

Here we introduce the one-step actor-critic method that uses the one-
step return 𝐺𝑡∶𝑡+1 as the target in the update and that still uses the learned
state-value function ̂𝑣𝑤 as the baseline 𝑏 ∶= ̂𝑣𝑤. This yields the iteration

𝜃𝑡+1 ∶= 𝜃𝑡 + 𝛼𝛾𝑡(𝐺𝑡 − 𝑏(𝑆𝑡))∇𝜃 ln𝜋𝜃(𝐴𝑡 ∣ 𝑆𝑡, 𝜃𝑡)
= 𝜃𝑡 + 𝛼𝛾𝑡(𝑅𝑡 + 𝛾 ̂𝑣𝑤(𝑆𝑡+1) − ̂𝑣𝑤(𝑆𝑡))∇𝜃 ln𝜋𝜃(𝐴𝑡 ∣ 𝑆𝑡, 𝜃𝑡)

The update of the baseline is now performed by TD(0) in order to be con-
sistent in the methods that are used to learn the baseline and the policy.

The name comes from the intuition that the policy is the actor (answer-
ing the question what to do) and the baseline, i.e., the state-value function
is the critic (answering the question how well it is done).

This one-step actor-critic method is shown in Algorithm 18.
Of course, instead of the one-step return, the 𝑛-step return 𝐺𝑡∶𝑡+𝑛 or the

𝜆-return 𝐺𝜆
𝑡 can be used.

7.7 Bibliographical and Historical Remarks

Problems
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Algorithm 18 one-step actor critic for calculating 𝜋𝜃 ≈ 𝜋∗.
initialization:
choose a representation for the policy 𝜋𝜃
choose a representation for the state-value function ̂𝑣𝑤
choose learning rate 𝛼𝜃 ∈ ℝ+

choose learning rate 𝛼𝑤 ∈ ℝ+

initialize policy parameter 𝜃 ∈ Θ ⊂ ℝ𝑑′

initialize state-value parameter 𝑤 ∈ 𝑊 ⊂ ℝ𝑑

loop ▷ for all episodes
initialize 𝑠 ∼ 𝜄
𝐺 ∶= 1
while 𝑠 is not terminal do ▷ for all time steps

choose action 𝑎 according to 𝜋𝜃(⋅|𝑠)
take action 𝑎 and receive the new state 𝑠′ and the reward 𝑟
𝛿 ∶= 𝑅 + 𝛾 ̂𝑣𝑤(𝑠′) − ̂𝑣𝑤(𝑠)
𝑤 ∶= 𝑤 + 𝛼𝑤𝛿∇𝑤 ̂𝑣𝑤(𝑠)
𝜃 ∶= 𝜃 + 𝛼𝜃𝐺𝛿∇𝜃 ln𝜋𝜃(𝑎 ∣ 𝑠, 𝜃)
𝐺 ∶= 𝛾𝐺
𝑠 ∶= 𝑠′

end while
end loop

return 𝜃 and 𝑤
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Chapter 8

Hamilton-Jacobi-Bellman
Equations

8.1 Introduction
In certain cases, it is possible to model the environment by difference or
differential equations. This may be the case when the environment depends
on – for example – physical, chemical, or biological processes that can be de-
scribed by such equations. The ability to describe the environment in such a
manner usually has the advantage that the number of episodes available for
learning is unlimited, since episodes can be rolled out by solving the equa-
tions. This is in contrast to problems in data science, where the available
data may be limited. The purpose of this chapter is to take advantage of
the knowledge about the environment encoded in the equations.

In this chapter, we study the case when the environment can be de-
scribed by deterministic or stochastic ordinary differential equations, lead-
ing to problems in deterministic and stochastic optimal control. Here we
follow the notation for rl problems used in the rest of the book.

We write the state equation in the form of the initial-value problem

̇𝑠(𝑡) = 𝑓(𝑠(𝑡), 𝜋(𝑡)) ∀𝑡 ∈ ℝ+
0 , (8.1a)

𝑠(0) = 𝑠0 ∈ 𝒮, (8.1b)

where the function 𝑠∶ ℝ+
0 → 𝒮, whose image is the set 𝒮 ⊂ ℝ𝑛𝑠 of all states,

gives the state of the system at time 𝑡 ∈ ℝ+
0 , the function 𝑢∶ ℝ+

0 → 𝒜(𝑡),
whose image is the set 𝒜(𝑡) ⊂ ℝ𝑛𝑎 of all actions available at time 𝑡, is the
control applied at time 𝑡 ∈ ℝ+

0 , and the vector valued function 𝑓 ∶ ℝ𝑛𝑠 ×
ℝ𝑛𝑎 → ℝ𝑛𝑠 describes the dynamics of the system as a deterministic or
stochastic ordinary differential equation.

The control 𝑢∶ ℝ+
0 → 𝒜 and the corresponding policy 𝜋 ∶ 𝒮 → 𝒜 are

related simply by
𝑢(𝑡) = 𝜋(𝑠(𝑡)).
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We assume that the state set or state space 𝒮 is an open, bounded set
with a sufficiently smooth boundary. We also assume that the function 𝑢
is bounded and Lebesgue measurable and that its image is a compact set
in 𝒜(𝑡). Furthermore, we assume that the dynamics 𝑓 of the system are
Lipschitz continuous with respect to its first argument 𝑠(𝑡).

If the control function 𝑢 is given, then the initial-value problem (8.1) has
a unique solution as known from the standard theory of ordinary differential
equations. Unfortunately, the solution may exit the state space 𝒮 at a certain
time

𝜏 ∶= {∞, 𝑠(𝑡) ∈ 𝒮 ∀𝑡 ∈ ℝ+
0 ,

inf{𝑡 ∈ ℝ+
0 ∣ 𝑠(𝑡) ∉ 𝒮}, otherwise,

the so-called exit time.
Next, we define the (deterministic) return as the functional

𝐺∶ 𝒮 × (ℝ+
0 → 𝒜(𝑡)) → ℝ,

𝐺(𝑠0, 𝑢) ∶= ∫
𝜏

0
e−𝛾𝑡𝑟(𝑠(𝑡), 𝑢(𝑡))d𝑡 + e−𝛾𝜏𝑅(𝑠(𝜏))

on the state space 𝒮 and the set of all actions. The function 𝑟 ∶ 𝒮×𝒜(𝑡) → ℝ
is called the current reward, and the function 𝑅∶ 𝜕𝒮 → ℝ is called the
boundary reward. The discount rate 𝛾 ∈ ℝ+ is constant. The return is the
continuously discounted return over all times [0, 𝜏 ] the trajectory {𝑡 ∈ [0, 𝜏] ∣
𝑠(𝑡)} remains within the set 𝒮 of admissible states.

The optimal-control problem consists in finding an initial state 𝑠0 ∈ 𝒮
and an optimal control 𝑢∗ that maximizes the return 𝐺.

8.2 The Hamilton-Jacobi-Bellman Equation
Similar to the discrete case, we can find an equation that is satisfied by
optimal controls; this is the purpose of this section. We start by defining
the optimal value function.

Definition 8.1 (optimal value function). The optimal value function is
defined as

𝑣∗ ∶ 𝒮 → ℝ, 𝑣∗(𝑠0) ∶= sup
𝑢∈𝒫

𝐺(𝑠0, 𝑢),

and gives the maximal value of the return 𝐺 for the initial state 𝑠0 ∈ 𝒮 over
all controls 𝑢 ∈ 𝒫. The supremum is taken over the set 𝒫 of all bounded,
Lebesgue measurable functions 𝑢∶ ℝ+

0 → 𝒜(𝑡).

The following lemma states that the optimal value function 𝑣∗ can be
split into a sum for the time interval [0,Δ𝑡) and one for the rest [Δ𝑡,∞)
of the time [13, Lemma I.7.1]. This is analogous to the Bellman optimality
equation (2.7).
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Lemma 8.2 (dynamic-programming principle). The equation

𝑣∗(𝑠0) = sup
𝑢∈𝒫

(∫
min(Δ𝑡,𝜏)

0
e−𝛾𝑡𝑟(𝑠(𝑡), 𝑢(𝑡))d𝑡 + e−𝛾𝜏𝑅(𝑠(𝜏))[𝜏 < Δ𝑡]

+ e−𝛾Δ𝑡𝑣∗(𝑠(Δ𝑡))[𝜏 ≥ Δ𝑡]) ∀𝑠0 ∈ 𝒮 ∀Δ𝑡 ∈ ℝ+
0

holds. Here the Iverson notation means that [statement] = 1 if the statement
holds true and [statement] = 0 otherwise.

In the following, we approximate the right side in Lemma 8.2 for small
Δ𝑡. The first term can be approximated as

∫
min(Δ𝑡,𝜏)

0
e−𝛾𝑡𝑟(𝑠(𝑡), 𝑢(𝑡))d𝑡 = Δ𝑡𝑟(𝑠0, 𝑢(0)) + 𝑜(Δ𝑡).

The second term tends to zero as Δ𝑡 → 0. The third term, the optimal
value function becomes

𝑣∗(𝑠(Δ𝑡)) = 𝑣∗(𝑠0) + Δ𝑡∇𝑣∗(𝑠0) ⋅ ̇𝑠(0) + 𝑜(Δ𝑡)
= 𝑣∗(𝑠0) + Δ𝑡∇𝑣∗(𝑠0) ⋅ 𝑓(𝑠0, 𝑢(0)) + 𝑜(Δ𝑡)

using Taylor expansion and the state equation (8.1). Next, we divide the
equation by Δ𝑡 to find

1 − e−𝛾Δ𝑡

Δ𝑡 𝑣∗(𝑠0) = sup
𝑢∈𝒫

(𝑟(𝑠0, 𝑢(0)) + e−𝛾Δ𝑡∇𝑣∗(𝑠0) ⋅ 𝑓(𝑠0, 𝑢(0)) +
𝑜(Δ𝑡)
Δ𝑡 )

for all 𝑠0 ∈ 𝒮 and for sufficiently small Δ𝑡. Finally, we obtain the Hamilton-
Jacobi-Bellman (hjb) equation by letting Δ𝑡 tend to zero.

Theorem 8.3 (Hamilton-Jacobi-Bellman equation). If the optimal value
function 𝑣∗ is in 𝐶1(𝒮), then it satisfies the Hamilton-Jacobi-Bellman equa-
tion

𝛾𝑣∗(𝑠0) = sup
𝑎∈𝒜(0)

(𝑟(𝑠0, 𝑎) + ∇𝑣∗(𝑠0) ⋅ 𝑓(𝑠0, 𝑎)) ∀𝑠0 ∈ 𝒮 (8.2)

with the boundary condition

𝑣∗(𝑠) ≥ 𝑅(𝑠) ∀𝑠 ∈ 𝜕𝒮. (8.3)

Note that here the supremum is taken over all actions 𝑎 ∈ 𝒜(0) available
at time zero.

The inequality in the boundary conditions holds because there may be
points 𝑠 ∈ 𝜕𝒮 for which a control exists such that 𝐺(𝑠, 𝑢(𝑡)) > 𝑅(𝑠), imply-
ing the strict inequality. It is also possible that the trajectory immediately
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exits the state space after starting on the boundary 𝜕𝒮. If this is the optimal
control, then the equality in the boundary condition holds.

The hjb equation in Theorem 8.3 is a necessary condition for its solution
being the optimal value function. The following theorem states that it is
also a sufficient condition [13, Theorem I.7.1].
Theorem 8.4 (sufficient condition). Suppose that 𝑤 ∈ 𝐶1(𝒮) satisfies
(8.2) and (8.3). If 𝜏 = ∞, suppose that 𝑤 also satisfies the equation
lim𝑡→∞ e−𝛾𝑡𝑤(𝑠(𝑡)) = 0. Then the inequality 𝑤(𝑠) ≥ 𝑣∗(𝑠) holds for all
𝑠 ∈ 𝒮.

Furthermore, suppose that there exists a control 𝑢∗ such that
𝑢∗(𝑡) ∈ argmax

𝑎∈𝒜(𝑡)
{𝑟(𝑠∗(𝑡), 𝑎) + ∇𝑤(𝑠∗(𝑡)) ⋅ 𝑓(𝑠∗(𝑡), 𝑎)} (8.4)

for almost all 𝑡 ∈ [0, 𝜏∗) and that 𝑤(𝑠∗(𝜏∗)) = 𝑅(𝑠∗(𝜏∗)) if 𝜏∗ < ∞, where 𝑠∗ is
the solution of the state equation (8.1) for 𝑢 = 𝑢∗ and 𝜏∗ is the corresponding
exit time. Then 𝑢∗ is optimal for the initial state 𝑠 and the equation

𝑤(𝑠) = 𝑣∗(𝑠) ∀𝑠 ∈ 𝒮
holds.
Proof. Since 𝑤 ∈ 𝐶1(𝒮), we can start from the equality

e−𝛾𝑡𝑤(𝑠(𝑡)) = 𝑤(𝑠) +∫
𝑡

0

d
d𝑡′ (e

−𝛾𝑡′𝑤(𝑠(𝑡′)))d𝑡′

= 𝑤(𝑠) +∫
𝑡

0
e−𝛾𝑡′(−𝛾𝑤(𝑠(𝑡′)) + ̇𝑠(𝑡′) ⋅ ∇𝑤(𝑠(𝑡′)))d𝑡′.

Using the state equation (8.1), we find

e−𝛾𝑡𝑤(𝑠(𝑡)) = 𝑤(𝑠) +∫
𝑡

0
e−𝛾𝑡′(−𝛾𝑤(𝑠(𝑡′)) + 𝑓(𝑠(𝑡′), 𝑢(𝑠)) ⋅ ∇𝑤(𝑠(𝑡′)))d𝑡′,

and using (8.2), we find

e−𝛾𝑡𝑤(𝑠(𝑡)) ≤ 𝑤(𝑠) −∫
𝑡

0
e−𝛾𝑡′𝑟(𝑠(𝑡′), 𝑢(𝑡′))d𝑡′ ∀𝑢 ∈ 𝒫 ∀𝑡 ∈ [0, 𝜏).

Letting 𝑡 tend to the exit time 𝜏 yields

𝑤(𝑠) ≥ ∫
𝜏

0
e−𝛾𝑡′𝑟(𝑠(𝑡′), 𝑢(𝑡′))d𝑡′ + lim

𝑡→𝜏
e−𝛾𝑡𝑤(𝑠(𝑡)).

In the case 𝜏 < ∞, the inequality lim𝑡→𝜏 e
−𝛾𝑡𝑤(𝑠(𝑡)) ≥ e−𝛾𝜏𝑅(𝑠(𝜏)) holds

for the last term. In the case 𝜏 = ∞, the limit is zero by assumption. In
both cases, we thus have the inequality

𝑤(𝑠) ≥ 𝐺(𝑠, 𝑢) ∀𝑠 ∈ 𝒮
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for all controls 𝑢 ∈ 𝒫, which implies

𝑤(𝑠) ≥ 𝑣∗(𝑠) ∀𝑠 ∈ 𝒮.

This concludes the proof of the first assertion.
The first assumption of the second assertion of the theorem means that

the action 𝑢∗(𝑡) is always maximal. Together with the second assumption,
the same calculations as above can be performed for 𝑢∗ instead of 𝑢, but
with equalities everywhere. Thus we have 𝑤(𝑠) = 𝐺(𝑠, 𝑢∗) for all 𝑠 ∈ 𝒮 and
hence the equality

𝑤(𝑠) = 𝑣∗(𝑠) ∀𝑠 ∈ 𝒮
holds, which concludes the proof.

Knowing the dynamics 𝑓 of the system, we solve (8.2) in Theorem 8.3
for the optimal value function 𝑣∗. Knowing 𝑣∗, we can then use (8.4) in
Theorem 8.4 to find an optimal control. However, so far we have used
controls as functions of time and not policies as functions of state. Both a
control 𝑢∶ ℝ+

0 → 𝒜 and a policy 𝜋 ∶ 𝒮 → 𝒜 are related simply by

𝑢(𝑡) = 𝜋(𝑠(𝑡)).

Therefore, we use (8.4) to find an optimal policy by choosing

𝜋∗(𝑠) ∈ argmax
𝑎∈𝒜(𝑡)

{𝑟(𝑠, 𝑎) + ∇𝑣∗(𝑠) ⋅ 𝑓(𝑠, 𝑎)}.

8.3 An Example of Optimal Control
The following, simple example shows that the optimal value function is in
general not a classical solution of the hjb equation (8.2). Therefore the
question arises, in which class of solutions the optimal value function is the
unique solution of the hjb equation, if such a class of solutions exists at all.
The answer to this question are viscosity solutions. The main result will be
that the optimal value function is the unique viscosity solution of the hjb
equation.

The example a one-dimensional control problem [14]. The system dy-
namics are given by

̇𝑠(𝑡) = 𝑢(𝑡) ∀𝑡 ∈ ℝ+
0 ,

𝑠(0) = 𝑠0,

where 𝒮 ∶= [0, 1] and 𝒜 ∶= {±1}, and hence 𝑠∶ ℝ+
0 → [0, 1] and 𝑢∶ ℝ+

0 →
{±1}. The interpretation in classical mechanics is that the velocity of a
particle at position 𝑠(𝑡) is controlled to be either +1 or −1. We define the
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current reward 𝑟 to always vanish and the boundary reward to be 𝑅(0) ∶=
𝑅0 > 0 and 𝑅(1) ∶= 𝑅1 > 0. Therefore the return is

𝐺(𝑠0, 𝑢) = {e−𝛾𝜏𝑅0, 𝑠(𝜏) = 0,
e−𝛾𝜏𝑅1, 𝑠(𝜏) = 1.

The optimal value function is easily found. Since the current reward
always vanishes, the best policy is to reach the boundary as quickly as
possible because of the factor e−𝛾𝜏 . Since we can only go to the left or to
the right, the exit time is 𝜏 = 1 − 𝑠 or 𝜏 = 𝑠, respectively, yielding the
optimal value function

𝑣∗(𝑠) ∶= max(𝑅0e
−𝛾𝑠, 𝑅1e

−𝛾(1−𝑠)). (8.5)

The hjb equation (8.2) simplifies to

𝑣∗(𝑠) = max
𝑎∈𝒜={±1}

𝑎𝑣′∗(𝑠) = |𝑣′∗(𝑠)|

with the boundary conditions 𝑣∗(0) ≥ 𝑅0 and 𝑣∗(1) ≥ 𝑅1.
The first problem is that the optimal value function is not a classical

solution of the hjb equation (8.2). Already in the case 𝑅0 ∶= 1, 𝑅1 ∶= 1,
and 𝛾 ∶= 1, the optimal value function is not differentiable (at one point,
namely 𝑠 = 1/2).

Therefore it is plausible to admit generalized solutions that are differ-
entiable almost everywhere. However, the second problem is that there
may be infinitely many solutions satisfying the hjb equation (8.2) almost
everywhere.

The third problem is that the optimal value function may satisfy the
boundary condition only as a strict inequality. For the case 𝑅0 ∶= 1, 𝑅1 ∶= 5,
and 𝛾 ∶= 1, the optimal value function is 𝑣∗ = 𝑅1e𝑠−1. The boundary
condition at 𝑠 = 0 is 𝑉 (0) > 𝑅0. The reason is that the reward 𝑅1 for
leaving the domain [0, 1] at 𝑠 = 1 is so much larger that the reward for
leaving at 𝑠 = 0 that it is always the best policy to move to the right, even
when starting at 𝑠 = 0. The boundary condition is therefore satisfied at
𝑠 = 0 as a strict inequality.

8.4 Viscosity Solutions
It turns out that the correct solution type for the hjb equation (8.2) are
viscosity solutions in the sense that in this class of solutions, unique existence
can be guaranteed. This is important: if the optimal value function is
the unique solution of the hjb equation, we know that after solving the
equation we can immediately solve the optimal-control problem by choosing
the actions according to (8.4).
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The name of viscosity solutions refers to the vanishing-viscosity method
used to show their existence [15].

To state some properties of viscosity solutions, we write the first-order
equation under consideration as the boundary-value problem

𝐻(𝑠, 𝑣,∇𝑣) = 0 ∀𝑠 ∈ 𝒮, (8.6a)
𝑣(𝑠) = 𝑤(𝑠) ∀𝑠 ∈ 𝜕𝒮, (8.6b)

where 𝒮 is an open domain, 𝑤∶ 𝜕𝒮 → ℝ is the boundary condition, and the
given function 𝐻 is called the Hamiltonian of the system. The hjb equation
(8.2) corresponds to

𝐻(𝑠, 𝑣, 𝑝) ∶= 𝛾𝑣 − sup
𝑎∈𝒜(𝑠)

(𝑟(𝑠, 𝑎) + 𝑝 ⋅ 𝑓(𝑠, 𝑎))

Definition 8.5 (viscosity solution). Suppose 𝑣 ∶ 𝒮 → ℝ is continuous and
that 𝑣 = 𝑤 on 𝜕𝒮.

The function 𝑣 is called a viscosity subsolution of (8.6) if the following
statement holds for all 𝜙 ∈ 𝐶1(𝒮): If 𝑣 − 𝜙 has a local maximum at 𝑠0 ∈ 𝒮,
then 𝐻(𝑠0, 𝑣(𝑠0),∇𝜙(𝑠0)) ≤ 0.

The function 𝑣 is called a viscosity supersolution of (8.6) if the following
statement holds for all 𝜙 ∈ 𝐶1(𝒮): If 𝑣 − 𝜙 has a local minimum at 𝑠0 ∈ 𝒮,
then 𝐻(𝑠0, 𝑣(𝑠0),∇𝜙(𝑠0)) ≥ 0.

The function 𝑣 is called a viscosity solution of (8.6) if it is both a viscosity
subsolution and a viscosity supersolution.

Continuing the example in Section 8.3 for the case 𝑅0 ∶= 1, 𝑅1 ∶= 1, and
𝛾 ∶= 1, it can be checked by elementary calculations that (8.5) is a viscosity
solution of the hjb equation 𝐻(𝑠, 𝑣(𝑠), 𝑣′(𝑠)) ∶= 𝑣(𝑠)− |𝑣′(𝑠)| = 0 as follows.
The function 𝑣∗ is a classical solution on both intervals (0, 1/2) and (1/2, 1)
and hence also a viscosity solution on these intervals by Lemma 8.6. To
establish that 𝑣∗ is a viscosity solution, it suffices to check the conditions in
the definition at 𝑠 = 1/2.

Next, we summarize a few basic properties of viscosity solutions.

Lemma 8.6. Suppose 𝑣 ∈ 𝐶1(𝒮) be a classical solution of (8.6). Then it is
also a viscosity solution.

Lemma 8.7. Suppose 𝑣 ∈ 𝐶(𝒮) is a viscosity solution of (8.6) and suppose
𝑣 is differentiable at 𝑠0 ∈ 𝒮. Then 𝐻(𝑠0, 𝑣(𝑠0),∇𝑣(𝑠0)) = 0.

Proof. [16, Section 10.1.2].

Theorem 8.8. Under certain assumptions on the Hamiltonian 𝐻, the
boundary-value problem (8.6) has at most one bounded viscosity solution.

Proof. [15, Theorem III.1].
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So far, we have seen that the solution of the boundary-value problem
(8.6) is unique among the viscosity solutions under some assumptions. How-
ever, the boundary condition in Theorem 8.3 is the inequality (8.3) and not
an equality such as the boundary condition in (8.6). The theorems below
show that the hjb equation has a unique viscosity solution with the following
inequality boundary conditions and with a further assumption.

Definition 8.9 (viscosity solution with inequality boundary conditions).
Suppose 𝑣 is a viscosity solution of the equation

𝐻(𝑠, 𝑣(𝑠),∇𝑣(𝑠)) = 0.

Then 𝑣 is called a viscosity solution with the inequality boundary conditions

𝑣(𝑠) ≥ 𝑤(𝑠) ∀𝑠 ∈ 𝜕𝒮

if the following two conditions hold.

1. If 𝜙 ∈ 𝐶1(𝒮) and the function 𝑣 − 𝜙 has a local maximum at 𝑠0 ∈ 𝜕𝒮,
then

min(𝐻(𝑠0, 𝑣(𝑠0),∇𝜙(𝑠0)), 𝑣(𝑠0) − 𝑤(𝑠0)) ≤ 0.

2. If 𝜙 ∈ 𝐶1(𝒮) and the function 𝑣 − 𝜙 has a local minimum at 𝑠0 ∈ 𝜕𝒮,
then

max(𝐻(𝑠0, 𝑣(𝑠0),∇𝜙(𝑠0)), 𝑣(𝑠0) − 𝑤(𝑠0)) ≥ 0.

The following assumption means that at any point on the boundary of
the state space there is at least one trajectory that is not tangential to the
boundary.

Assumption 8.10. The following two assumptions hold for all 𝑠 ∈ 𝜕𝒮,
where 𝑛(𝑠) denotes the outward pointing normal vector of 𝒮 at 𝑠.

1. If there exists an 𝑎 ∈ 𝒜 such that 𝑓(𝑠, 𝑎) ⋅ 𝑛(𝑠) ≤ 0, then there exists
an 𝑎′ ∈ 𝒜 such that 𝑓(𝑠, 𝑎′) ⋅ 𝑛(𝑠) < 0.

2. If there exists an 𝑎 ∈ 𝒜 such that 𝑓(𝑠, 𝑎) ⋅ 𝑛(𝑠) ≥ 0, then there exists
an 𝑎′ ∈ 𝒜 such that 𝑓(𝑠, 𝑎′) ⋅ 𝑛(𝑠) > 0.

Theorem 8.11. Suppose that Assumption 8.10 holds. Then the equation
(8.2) with the boundary condition (8.3) has a unique viscosity solution with
an inequality boundary condition.

Proof. [14, Theorem 4], [13, Section II.11 and II.13].

In summary, viscosity solutions are the right class of solutions for the
hjb equation (8.2) in the sense that there always exists a unique solution
for the purposes of Theorem 8.3 and solving the optimal-control problem.
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8.5 Stochastic Optimal Control
If the environment is stochastic, the dynamics of the system are described
by a stochastic ordinary differential equation. This case is realistic because
of random fluctuations in the system and lack of precision in measurements.

In the case of additive and normally distributed noise, the dynamics of
the system are given by the stochastic ordinary differential equation

d𝑠 = 𝑓(𝑠(𝑡)), 𝑢(𝑡))d𝑡 + 𝜎(𝑠(𝑡), 𝑢(𝑡))d𝜔 ∀𝑡 ∈ ℝ+
0 , (8.7a)

𝑠(0) = 𝑠0 ∈ 𝒮 (8.7b)

to be understood in the sense of Itô calculus. Here 𝜔 is a Brownian motion
of dimension 𝑑 ∶= dim𝒮, and 𝜎 is an 𝑛×𝑑 matrix, where 𝑛 ∶= dim𝒮+dim𝒜.

Definition 8.12 (stochastic process). If (Ω,ℱ, 𝑃) is a probability space and
(𝑆, Σ) is a measurable space, then a stochastic process is a set {𝑋𝑡 ∣ 𝑡 ∈ 𝑇}
of random variables 𝑋𝑡 with values in 𝑆.
Definition 8.13 (Brownian motion). A Brownian motion or a Wiener pro-
cess is a stochastic process 𝜔 that satisfies the following conditions.

1. 𝜔(0) = 0.

2. 𝜔𝑡 is almost surely continuous for all 𝑡 ∈ ℝ+
0 .

3. The increments of 𝜔 are independent, i.e., the increments 𝜔𝑡1−𝜔𝑠1 and
𝜔𝑡2 and 𝜔𝑠2 are independent random variables if 0 ≤ 𝑠1 < 𝑡1 ≤ 𝑠2 < 𝑡2.

4. The increments are normally distributed; more precisely,

∀𝑡 ∈ ℝ+
0 ∶ ∀𝑠 ∈ [0, 𝑡] ∶ 𝜔𝑡 − 𝜔𝑠 ∼ 𝑁(0, 𝑡 − 𝑠).

In the stochastic case, the return

𝐺∶ 𝒮 × (ℝ+
0 → 𝒜(𝑡)) → ℝ,

𝐺(𝑠0, 𝑢) ∶= 𝔼[∫
𝜏

0
e−𝛾𝑡𝑟(𝑠(𝑡), 𝑢(𝑡))d𝑡 + e−𝛾𝜏𝑅(𝑠(𝜏))] .

is the expected value over all trajectories of the stochastic process that is
the solution of the state equation. Then the definition of the optimal value
function remains the same.

It can be shown that if the optimal value function 𝑣∗ is in 𝐶2(𝒮 → ℝ),
then it satisfies the hjb equation

𝛾𝑣∗(𝑠) = sup
𝑎∈𝒜(0)

(𝑟(𝑠, 𝑎) + ∇𝑣∗(𝑠) ⋅ 𝑓(𝑠, 𝑎) +
1
2

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑎𝑖𝑗(𝑠, 𝑎)
𝜕𝑣∗

𝜕𝑠𝑖𝜕𝑠𝑗
(𝑠)) ∀𝑠 ∈ 𝒮,

(8.8a)
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𝑣∗(𝑠) = 𝑅(𝑠) ∀𝑠 ∈ 𝜕𝒮,
(8.8b)

where (𝑎𝑖𝑗) = 𝐴 ∶= 𝜎𝜎⊤. This hjb equation is a nonlinear, second-order
partial differential equation.

If the matrix 𝐴 is uniformly elliptic, then the hjb equation (8.8) has
a unique classical solution. Otherwise, the concept of viscosity solutions
extended to second-order equations [17] can be used.

8.6 Bibliographical and Historical Remarks

Problems
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Deep Reinforcement
Learning

Advanced algorithms and huge computational resources have made it pos-
sible in recent years to train reinforcement-learning agents based on deep
neural networks that can outperform humans in playing games such as Atari
2600, chess, and Go.

9.1 Introduction
Series of papers coming out of Google DeepMind: [3], [18], [5], [6], [4], [19].

9.2 Atari 2600 Games
In [3], the action-value function was represented by a deep neural network,
termed a deep Q-network (dqn). The dqn agent received only the pixels
and the game score as inputs and was able to achieve a level comparable to
that of a professional human games tester. Importantly, the same algorithm,
neural-network architecture, and hyperparameters were used across a set of
49 games,1 representing a diverse collection of tasks.

The algorithm is shown in Algorithm 19.
We denote the approximation, a neural network, of the action-value func-

tion by ̂𝑞(𝑠, 𝑎,w) as usual. The 𝑄-learning update uses the quadratic loss
function

𝐿𝑖(w𝑖) ∶= 𝔼(𝑠,𝑎,𝑟,𝑠′)∼𝑈(𝐷𝑖)[(𝑟 + 𝛾max
𝑎′

̂𝑞(𝑠′, 𝑎′,w−
𝑖 ) − ̂𝑞(𝑠, 𝑎,w𝑖))

2],

which is the mean-squared error of the Bellman equation. Here the agent’s
1dqn plays Breakout: https://www.youtube.com/watch?v=TmPfTpjtdgg. dqn plays Space

Invaders: https://www.youtube.com/watch?v=W2CAghUiofY.
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Algorithm 19 deep Q-network (dqn) with experience replay.
initialization:
initialize replay memory 𝐷
initialize action-value function ̂𝑞(w) with random weights w
initialize target action-value function ̂𝑞(w−) with weights w− ∶= w

for episode ∈ (0, 1,… ,𝑀) do ▷ for all episodes
initialize 𝑠0 ∶= 𝑥0 and preprocess 𝜙0 ∶= 𝜙(𝑠0)
for 𝑡 ∈ (0, 1,… , 𝑇 ) do ▷ for all time steps

select action 𝑎𝑡 𝜖-greedily as argmax𝑎 ̂𝑞(𝑠𝑡, 𝑎,w)
perform action 𝑎𝑡 in the emulator, obtain reward 𝑟𝑡+1 and image

𝑥𝑡+1
𝑠𝑡+1 ∶= (𝑠𝑡, 𝑎𝑡, 𝑥𝑡+1)
preprocess 𝜙𝑡+1 ∶= 𝜙(𝑠𝑡+1)
store transition (𝜙𝑡, 𝑎𝑡, 𝑟𝑡+1, 𝜙𝑡+1) in 𝐷
sample transitions (𝜙𝑗, 𝑎𝑗, 𝑟𝑗+1, 𝜙𝑗+1) from 𝐷
set

𝑦𝑗 ∶= {𝑟𝑗, if episode terminates at step 𝑗 + 1,
𝑟𝑗 + 𝛾max𝑎′ ̂𝑞(𝜙𝑗+1, 𝑎′,w−), otherwise

perform a gradient-descent step on ∑𝑗(𝑦𝑗 − ̂𝑞(𝑠, 𝑎,w))2 w.r.t. w
every 𝐶 steps: w− ∶= w

end for
end for
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experiences
(𝑠𝑡, 𝑎𝑡, 𝑟𝑡+1, 𝑠𝑡+1)

in each time step 𝑡 are stored in data sets𝐷𝑡 ∶= {𝑒1,… , 𝑒𝑡}, and the expected
value is approximated by drawing samples, or minibatches in the language
of neural networks, (𝑠, 𝑎, 𝑟, 𝑠′) uniformly from the data set 𝐷𝑖 in training
iteration 𝑖. The parameters w−

𝑖 are parameters from an iteration before the
𝑖-th one, in contrast to the parameters w𝑖 in the 𝑖-th iteration. The gradient
of the loss function is given by

∇w𝑖
𝐿𝑖(w𝑖) = −2𝔼(𝑠,𝑎,𝑟,𝑠′)∼𝑈(𝐷𝑖)[(𝑟+𝛾max

𝑎′
̂𝑞(𝑠′, 𝑎′,w−

𝑖 )− ̂𝑞(𝑠, 𝑎,w𝑖))∇w𝑖
̂𝑞(𝑠, 𝑎,w𝑖)].

𝑄-learning is recovered as the special case where w−
𝑖 ∶= w𝑖−1 and the ex-

pectation is replaced by just using the current sample.
The neural network that serves as the approximation of the action-value

function takes a preprocessed 84×84×4 image as its input. Three convolu-
tional layers are followed by two fully connected layers, and the activation
functions in each layer are the rectifiers 𝑥 ↦ max(0, 𝑥). The output layer
has a single output for each valid action. There are eighteen valid actions:
nine directions (including no input corresponding to a centered joystick) and
these nine directions with the fire button pressed simultaneously.

The RMSProp algorithm with samples or minibatches of size 32 was
used to train the neural network in the dqn algorithm. The particular
choice of training algorithm is not a defining feature of the whole procedure,
as different algorithms were used in later works.

For all games, the discount factor was 𝛾 = 0.99. The behavior policy
was 𝜖-greedy and started with 𝜖 = 1, which was linearly reduced to 𝜖 = 0.1
after the first million frames and fixed at this value thereafter. Fifty million
frames were used for training, which corresponded to about 38 days of game
experience. Frames were skipped; more precisely, in all games actions were
selected only on every fourth frame, and the last action was repeated on
all frames in between. This simple frame-skipping technique helped reduce
computation time, since the emulator runs much faster than having the
agent select an action. The size of the buffer used for experience replay was
one million of the most recent frames.

The stability of the algorithm is important, especially when dealing non-
linear functions such as neural networks. Two provisions improve the sta-
bility. First, the error terms 𝑦𝑗− ̂𝑞(𝑠, 𝑎,w) are clipped to always be between
−1 and 1. Second, two separate networks, represented by the parameters w
and w−, are used. The target values 𝑦𝑗 in the 𝑄-learning updates are found
using the network with the older parameters w−, and the parameters w−

are updated to the current parameters w regularly after a certain number
of time steps. This provision increases the stability of the algorithm, since
an update that increases ̂𝑞(𝑠𝑡, 𝑎𝑡) often also increases ̂𝑞(𝑠𝑡+1, 𝑎) for all 𝑎 as
consecutive states are often highly correlated in such applications. Hence
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the target 𝑦𝑗 is also increased, which possibly leads to oscillations or diver-
gence of the action-value function. Generating the update targets 𝑦𝑗 using
the older parameters w− delays any effects of updates to ̂𝑞 on the targets 𝑦𝑗
and thus makes oscillations or divergence much more unlikely.

9.3 Go and Tree Search (AlphaGo)

Go is the most challenging of the classic board games due to its huge search
space, being larger than the one of chess, and the difficulty of evaluating
positions and moves. In [18], a computer program named AlphaGo defeated
a human professional player in the full-sized game of Go for the first time.
The human player was the European Go champion and he was defeated
by 5 games to 0. Playing against other programs, AlphaGo won 99.8% of
the games.

MCTS (see, e.g., [8, Section 8.11]) had been known to be the best algo-
rithm for playing Go and to achieve strong amateur play, and had previously
been used with policies or value functions based on linear combinations of
input features. The main innovation in [18] was to employ deep neural net-
works as policies and value functions and to learn in a stable manner while
doing so. Unsurprisingly, the computational effort was enormous.

Training the AlphaGo program consisted of several stages using different
methods. In the first step, the policy network was trained using a data set of
expert human moves and supervised learning. The advantage is fast learning
in the beginning based on gradients of high quality, although learning in this
step maximizes predictive accuracy and not winning games.

Then, reinforcement learning was used to optimize the policy network
from the first step using self-play. In this way, the policy network is ad-
justed towards winning games rather than accurate prediction of expert
human moves. Stochastic gradient ascent was used for optimization, and
the current policy network played against a randomly selected previous iter-
ation of the policy network. Randomizing the opponents stabilized training
and prevented overfitting to playing against the current policy.

In the third step, a value network was trained to predict the winners of
games played by the policy from the second step playing against itself. A
new data set was generated to prevent overfitting, and stochastic gradient
descent was used to minimize the mean squared error.

Finally, the AlphaGo program used MCTS and combined the policy and
value networks from the previous steps. The positions were evaluated using
the value network, and the actions were sampled using the policy network,
making the MCTS algorithm very efficient.
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9.4 Learning Go Tabula Rasa (AlphaGo Zero)
The next stage in the development of the Alpha programs was to render
the existence of a preexisting data set of expert moves superfluous. This
was achieved in [5], where AlphaGo Zero learned tabular rasa, i.e., without
any preexisting knowledge, to achieve superhuman proficiency in playing
Go. It became the first program to defeat a world champion, thus achieving
superhuman performance, and it won 100 to 0 against AlphaGo [18].

In AlphaGo, MCTS evaluated positions and selected moves using the
value and policy deep neural networks. These neural networks in AlphaGo
were initially trained using supervised learning from a data set with human
expert moves. Reinforcement learning and self-play were used only later.
AlphaGo Zero used solely reinforcement learning without any human expert
moves, guidance, or domain knowledge beyond the rules of the game; it
learned tabula rasa, i.e., it started learning from random play.

While AlphaGo used MCTS and separate policy and a value networks,
AlphaGo Zero used solely a single neural network. It also employed a sim-
pler tree search based on this single neural network to evaluate positions and
sample moves. The single neural network receives a raw board representa-
tion of the position and its history, and it outputs both a vector of move
probabilities and scalar value that estimates the probability of the current
player winning from the current position. Thus the single network takes on
the roles of both the policy and value networks. The structure of the net-
work is quite complicated, consisting of many blocks of convolutional layers
with batch normalization and rectifier nonlinearities.

9.5 Chess, Shogi, and Go through Self-Play (Al-
phaZero)

In [6], the approach taken in AlphaGo Zero was generalized into a single
algorithm, called AlphaZero, that achieved superhuman performance in the
challenging board games. Like AlphaGo Zero, AlphaZero started from ran-
dom play and without any domain knowledge except the game rules. Alp-
haZero could defeat a world champion in chess, shogi (Japanese chess, with
a more complex game tree than chess), and Go.

9.6 Video Games of the 2010s (AlphaStar)
In [4] and [19], attention returned to video games with partial observability
after the board games with no hidden information.

In [4], learning in the presence of multiple agents was addressed as an
extension of the work on the board games that are two-player turn based
games. The video game was a three-dimensional multi-player first-person
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video game, namely Quake III Arena in a mode called Capture the Flag.
A tournament-style evaluation was used to evaluate the performance of the
agent, which could only use pixels and game points scored as its input and
achieved human-level performance.

Learning proceeded by concurrently training a diverse population of
agents which played against each other. This approach seemed to stabi-
lize learning despite the partially observable environments and the multi-
agent nature of the game. The learning algorithm for each player was a
multi-step actor-critic policy-gradient algorithm with off-policy correction
and auxiliary tasks. The policies were represented as multi-time-scale re-
current neural networks with external memory. The agents built hierarchi-
cal temporary representations and recurrent latent variable model for their
sequential input data. This results in the construction of temporally hi-
erarchical representations that favor the use of memory and of temporally
coherent action sequences.

Self-play can be unstable and does not support concurrent training in
its basic form. Therefore a population of different agents was trained in
parallel, which stabilized training. In the episodes, each agent learned by
playing with team mates and against opponents sampled from the whole
population.

In [19], the AlphaStar program that plays the StarCraft II game is de-
scribed. StarCraft II is considered one of the most difficult games in profes-
sional esports due to its complexity and multi-agent challenges. AlphaStar
employs data from both human and agent games and strategies and counter-
strategies that are continually adapted. The policies are represented by deep
neural networks. AlphaStar competed in a series of online games against
human players in the full game of StarCraft II. It was rated at grandmaster
level for all three StarCraft races and ranked above 99.8% of officially ranked
human players.

9.7 Improvements to dqn and their Combination
In [20], six independent extensions to the dqn algorithm [3] were discussed,
and their combinations were studied empirically. Each of the six exten-
sions turned out to improve performance on a selection of 57 Atari 2600
games, and substantially so in most cases. All six improvements can also
be combined into an algorithm called the rainbow algorithm in this work.
Furthermore, an ablation study was performed to show the contribution of
each improvement to the overall performance of the rainbow algorithm.

While many extensions to the dqn algorithm, Algorithm 19, have been
proposed, the six extensions were chosen such that they address distinct lim-
itations of the dqn algorithm. Before discussing the six extensions, we recall
that dqn uses 𝑄-learning to define the loss function that is minimized in or-
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der to determine the parameters of a (deep) neural network that is trained
using stochastic gradient descent. Two important features to improve its
stability in face of nonlinear function approximation are experience replay
and the use of two parameters w (of the online network) and w− (of the
target network).

9.7.1 Double Q-Learning
The first extension is double 𝑄-learning already presented as Algorithm 12
in Chapter 5.

9.7.2 Prioritized Replay
The dqn algorithm samples uniformly from the experience-replay buffer.
However, using transitions from which there is much to learn more often
would seem to be more efficient, and these transitions should be sampled
more frequently. Prioritized replay hence assigns the probability

𝑝𝑡 ∝ ∣𝑅𝑡+1 + 𝛾𝑡+1 max
𝑎′

̂𝑞(𝑆𝑡+1, 𝑎′,w−) − ̂𝑞(𝑆𝑡, 𝐴𝑡,w)∣𝜔

to transitions based on the absolute td error, where 𝜔 is a hyperparameter.
Furthermore, new transitions are inserted in the replay buffer with higher
priority.

9.7.3 Dueling Networks
Dueling networks are an architecture of neural networks specifically designed
for value functions in reinforcement learning. They correspond to an action-
value function of the form

𝑞(𝑠, 𝑎,w) = 𝑣(𝑓(𝑠,w1),w2)+𝑑(𝑓(𝑠,w1), 𝑎,w3)−
1
|𝒜| ∑

𝑎′∈𝒜
𝑑(𝑓(𝑠,w1), 𝑎′,w3),

where w1, w2, and w3 are the parameters of the shared encoder 𝑓 , the value
stream 𝑣, and the advantage stream 𝑑 such that w = (w1,w2,w3). Thus
the value and advantage streams share the convolutional encoder.

9.7.4 Multi-Step Methods
Multi-step methods are discussed in Chapter 4 and often lead to faster learn-
ing with a suitable chosen number of steps. A multi-step variant of dqn can
be defined as minimizing the loss

(𝐺𝑡∶𝑡+𝑛 + 𝛾𝑛,𝑡 max
𝑎′∈𝒜

̂𝑞(𝑆𝑡+𝑛, 𝑎′,w) − 𝑞(𝑆𝑡, 𝐴𝑡,w))2

based on the 𝑛-step return 𝐺𝑡∶𝑡+𝑛.
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9.7.5 Distributional Reinforcement Learning
Distributional reinforcement learning is the largest extension and provides
a conceptual shift. Instead of maximizing the expected return as usual in
reinforcement learning, we can approximate the distribution of the returns.
This can be achieved for example by discretizing the distribution of returns
as discrete probability masses placed on a discrete support or (equidistant)
grid z. Then the distribution 𝑑𝑡 at time 𝑡 takes the values 𝑝𝑖𝜃(𝑠, 𝑎) on each
grid point 𝑧𝑖, and 𝑑𝑡 can be written as 𝑑𝑡 = (z,p𝜃(𝑠, 𝑎)). The parame-
ter 𝜃 must be determined such that this distribution approximates the true
distribution of returns.

To approximate the distribution of returns, a variant of Bellman’s op-
timality equation for distributions is useful. Furthermore, the difference
between the target distribution

𝑑′𝑡 ∶= (𝑅𝑡+1 + 𝛾𝑡+1z,p𝜃′(𝑠, argmax
𝑎∈𝒜

̂𝑞(𝑆𝑡+1, 𝑎, 𝜃′))

and 𝑑𝑡 must be minimized, for example by minimizing the Kullbeck-Leibler
divergence

𝐷KL(Φz(𝑑′𝑡) ‖ 𝑑𝑡).
Here the second argument of p𝜃′ is the greedy action with respect to the
mean action values

̂𝑞(𝑆𝑡+1, 𝑎, 𝜃′) = z ⋅ p𝜃′(𝑆𝑡+1, 𝑎),

and Φz is the 𝐿2 projection of the target distribution 𝑑′𝑡 onto the grid z.

9.7.6 Noisy Neural Networks
In some applications, such as in the game Montezuma’s Revenge, rewards are
delayed a long time from the actions and many actions must be performed
to collect the first reward. In such cases, 𝜖-greedy policies may provide
insufficient exploration. To overcome this limitation, noisy neural networks
include a noisy linear hidden layer of the form

y ∶= (𝑊x + b) + ((𝑊noisy ⊙ 𝜖𝑊 )x + bnoisy ⊙ 𝜖b)

which combines a deterministic, linear stream (the first term) with a noisy
stream (the second term). Here 𝜖𝑊 and 𝜖b are random variables, and ⊙
denotes elementwise multiplication. Because the hidden layer consists of a
deterministic and a noisy term, the neural network can learn to ignore the
noisy stream over time even with different rates in different parts of the state
space. This makes it possible to explore different parts of the state space at
different speeds.
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Chapter 11

Monte-Carlo Theory

11.1 Introduction
In Chapter 3, first-visit and every-visit Monte-Carlo prediction methods are
presented. In first-visit Monte Carlo, only the first visit to a state in every
episode is used to estimate its value, while in every-visit Monte Carlo, all
visits to a state in the episodes are used for calculating the value of the state.
In the first-visit case, the theory is more straightforward due to the inde-
pendence of the states in separate episodes, while an implementation needs
to check in every episode whether a state has already been visited. First-
visit Monte Carlo also generally requires more episodes to achieve the same
confidence in estimating the value function, rendering it less data efficient.

Both first-visit and every-visit Monte-Carlo converge to the true value
function. These facts are the subjects of the following sections.

11.2 Convergence of First-Visit Monte-Carlo Pre-
diction

In this section, the convergence result for the first-visit Monte-Carlo predic-
tion algorithm is stated and proved.

Theorem 11.1 (convergence of first-visit variant of Algorithm 5). Suppose
that all episodes consist of a finite number of iterations, that the rewards are
bounded, and that each state is visited an infinite number of times. Denote
the number of returns used to calculate the sample mean 𝑉𝑛 of the value
function in the first-visit variant of Algorithm 5 by 𝑛. Then the sample
mean 𝑉𝑛 converges to the correct value function 𝑣𝜋 for each state for a given
policy 𝜋 in distribution, more precisely,

∀𝑠 ∈ 𝒮∶ ∃𝜎𝑠 ∈ ℝ+ ∶ √𝑛(𝑉𝑛(𝑠) − 𝑣𝜋(𝑠))
d−−−⟶

𝑛→∞
𝑁(0, 𝜎2

𝑠).
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Proof. The returns obtained in each state 𝑠 by following the policy 𝜋 are
stored in the algorithm, and then their sample mean 𝑉𝑛(𝑠) is used as the
estimate of the correct state value 𝑣𝜋(𝑠). Since only the first visit of any
state is used in each episode, each return is an independent and identically
distributed random variable. Their expected values and their variances are
finite, since the rewards are bounded by assumption. Therefore, by the cen-
tral limit theorem, Theorem A.67, the sample means converge in distribution
and the error decays as 1/√𝑛 for each state 𝑠 ∈ 𝒮.

In summary, the proof is a straightforward application of the central
limit theorem, which is proved in Chapter A together with the law of large
numbers.

11.3 Convergence of Every-Visit Monte-Carlo Pre-
diction

In this section, the convergence result for the every-visit Monte-Carlo pre-
diction algorithm is stated and proved.

Theorem 11.2 (convergence of every-visit variant of Algorithm 5). Suppose
that all episodes consist of a finite number of iterations, that the rewards are
bounded, and that each state is visited an infinite number of times. Denote
the number of returns used to calculate the sample mean 𝑉𝑛 of the value
function in the every-visit variant of Algorithm 5 by 𝑛. Then the sample
mean 𝑉𝑛 almost surely converges to the correct value function 𝑣𝜋 for a given
policy 𝜋, more precisely,

∀𝑠 ∈ 𝒮∶ 𝑉𝑛(𝑠)
a. s.−−−⟶
𝑛→∞

𝑣𝜋(𝑠).

The proof follows [21, Section 5.2].

Proof. We denote the integer-valued random variable that yields the number
of visits to state 𝑠 ∈ 𝒮 in the 𝑘-th episode by 𝑁𝑠,𝑘, and the 𝑁𝑠,𝑘 samples
of the return generated in the 𝑘-th episode are denoted by 𝑅(𝑠, 𝑘,𝑚), 𝑚 ∈
{1,… ,𝑁𝑠,𝑘}.

Conditioned on 𝑁𝑠,𝑘 ≥ 1, the random variables 𝑁𝑠,𝑘 are non-negative,
independent, and identically distributed. They are independent because
the episodes are independent and they are identically distributed by the
Markov property of the environment. By the same reasons, the random
variables ∑𝑁𝑠,𝑘

𝑚=1𝑅(𝑠, 𝑘,𝑚) conditioned on 𝑁𝑠,𝑘 ≥ 1 are also independent
and identically distributed for different episodes 𝑘.

We denote the number of times that state 𝑠 has been visited in all
episodes by 𝑛𝑠, and the total number of visits to any state in all episodes
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by 𝑛. By assumption, all 𝑛𝑠, 𝑠 ∈ 𝒮, go to infinity as 𝑛 → ∞. The algorithm
calculates

𝑉𝑛𝑠
(𝑠) =

∑{𝑘∈ℕ∶𝑁𝑠,𝑘≥1}∑
𝑁𝑠,𝑘
𝑚=1𝑅(𝑠, 𝑘,𝑚)

∑{𝑘∈ℕ∶𝑁𝑠,𝑘≥1}𝑁𝑠,𝑘
,

where the nominator is the sum of all returns received in state 𝑠 and the
denominator is the number of all visits to state 𝑠 up to that point. The
quotient can be rewritten as

𝑉𝑛𝑠
(𝑠) =

1
𝑛𝑠

∑{𝑘∈ℕ∶𝑁𝑠,𝑘≥1}∑
𝑁𝑠,𝑘
𝑚=1𝑅(𝑠, 𝑘,𝑚)

1
𝑛𝑠

∑{𝑘∈ℕ∶𝑁𝑠,𝑘≥1}𝑁𝑠,𝑘
.

By the strong law of large numbers, Theorem A.66, applied to the nom-
inator and the denominator, we have

𝑉𝑛𝑠
(𝑠) a. s.−−−⟶

𝑛𝑠→∞

𝔼[∑𝑁𝑠,𝑘
𝑚=1𝑅(𝑠, 𝑘,𝑚) ∣ 𝑁𝑠,𝑘 ≥ 1]
𝔼 [𝑁𝑠,𝑘 ∣ 𝑁𝑠,𝑘 ≥ 1] .

By Wald’s equation, Theorem A.68, the quotient is equal to

𝔼[∑𝑁𝑠,𝑘
𝑚=1𝑅(𝑠, 𝑘,𝑚) ∣ 𝑁𝑠,𝑘 ≥ 1]
𝔼 [𝑁𝑠,𝑘 ∣ 𝑁𝑠,𝑘 ≥ 1] = 𝔼 [𝑅(𝑠, 𝑘, 1) ∣ 𝑁𝑠,𝑘 ≥ 1] ,

which is equal to 𝑣𝜋(𝑠) by the definition of the state-value function 𝑣𝜋.
In summary, we have shown that

𝑉𝑛(𝑠)
a. s.−−−⟶
𝑛→∞

𝑣𝜋(𝑠),

which concludes the proof.

11.4 Bibliographical and Historical Remarks
Further investigations into the convergence properties of first- and every-
visit Monte Carlo can be found in [22].
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Chapter 12

Convergence of Q-Learning

12.1 Introduction
𝑄-learning is an off-policy temporal-difference control method that directly
approximates the optimal action-value function 𝑞∗ ∶ 𝒮 ×𝒜 → ℝ. We denote
the approximation in time step 𝑡 of an episode by 𝑄𝑡 ∶ 𝒮 × 𝒜 → ℝ. The
initial approximation 𝑄0 is initialized arbitrarily except that it vanishes for
all terminal states. In each iteration, an action 𝑎𝑡 is chosen from state 𝑠𝑡
using a policy derived from the previous approximation of the action-value
function 𝑄𝑡, e.g., using an 𝜖-greedy policy, and a reward 𝑟𝑡+1 is obtained
and a new state 𝑠𝑡+1 is achieved. The next approximation 𝑄𝑡+1 is defined
as

𝑄𝑡+1(𝑠, 𝑎) ∶= {(1 − 𝛼𝑡)𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼𝑡(𝑟𝑡+1 + 𝛾max𝑎𝑄𝑡(𝑠𝑡+1, 𝑎)), (𝑠, 𝑎) = (𝑠𝑡, 𝑎𝑡),
𝑄𝑡(𝑠, 𝑎), (𝑠, 𝑎) ≠ (𝑠𝑡, 𝑎𝑡).

(12.1)
Here 𝛼𝑡 ∈ [0, 1] is the step size or learning rate and 𝛾 ∈ [0, 1] denotes the
discount factor.

In this value-iteration update, only the value for (𝑠𝑡, 𝑎𝑡) is updated.
The update can be viewed as a weighted average of the old value 𝑄𝑡(𝑠𝑡, 𝑎𝑡)
and the new information 𝑟𝑡+1 + 𝛾max𝑎𝑄𝑡(𝑠𝑡+1, 𝑎), which is an estimate
of the action-value function a time step later. Since the approximation
𝑄𝑡+1 depends on the previous estimate of 𝑞∗, 𝑄-learning is a bootstrapping
method.

The new value 𝑄𝑡+1(𝑠𝑡, 𝑎𝑡) can also be written as

𝑄𝑡+1(𝑠𝑡, 𝑎𝑡)⏟⏟⏟⏟⏟
new value

∶= 𝑄𝑡(𝑠𝑡, 𝑎𝑡)⏟⏟⏟⏟⏟
old value

+𝛼𝑡(𝑟𝑡+1 + 𝛾 max
𝑎∈𝒜(𝑠𝑡+1)

𝑄𝑡(𝑠𝑡+1, 𝑎)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
target value

−𝑄𝑡(𝑠𝑡, 𝑎𝑡)⏟⏟⏟⏟⏟
old value

),

which is the form of a semigradient sgd method with a certain linear function
approximation.

87



Chapter 12. Convergence of Q-Learning

The learning rate 𝛼𝑡 must be chosen appropriately, and convergence
results hold only under certain conditions on the learning rate. If the envi-
ronment is fully deterministic, the learning rate 𝛼𝑡 ∶= 1 is optimal. If the
environment is stochastic, then a necessary condition for convergence is that
lim𝑡→∞ 𝛼𝑡 = 0.

If the initial approximation𝑄0 is defined to have large values, exploration
is encouraged at the beginning of learning. This kind of initialization is
known as using optimistic initial conditions.

12.2 Convergence of the Discrete Method Proved
Using Action Replay

𝑄-learning was introduced in [10, page 95], where an outline [10, Appendix 1]
of the first convergence proof of one-step 𝑄-learning was given as well. The
original proof was extended and given in detail in [23]. It is presented in
a summarized form in this section, because its approach is different from
other, later proofs and because it gives intuitive insight into the convergence
process.

The proof concerns the discrete or tabular method, i.e., the case of finite
state and action sets. It is shown that 𝑄-learning converges to the optimum
action values with probability one if all actions are repeatedly sampled in
all states.

Before we can state the theorem, a definition is required. We assume
that all states and actions observed during learning have been numbered
consecutively; then 𝑁(𝑖, 𝑠, 𝑎) ∈ ℕ is defined as the index of the 𝑖-th time
that action 𝑎 is taken in state 𝑠.

Theorem 12.1 (convergence of 𝑄-learning proved by action replay). Sup-
pose that the state and action spaces are finite. Suppose that the episodes
that form the basis of learning include an infinite number of occurrences of
each pair (𝑠, 𝑎) ∈ 𝒮×𝒜 (e.g., as starting state-action pairs). Given bounded
rewards, the discount factor 𝛾 < 1, learning rates 𝛼𝑛 ∈ [0, 1), and

∞
∑
𝑖=1

𝛼𝑁(𝑖,𝑠,𝑎) = ∞ ∧
∞
∑
𝑖=1

𝛼2
𝑁(𝑖,𝑠,𝑎) < ∞ ∀(𝑠, 𝑎) ∈ 𝒮 ×𝒜,

then
𝑄𝑛(𝑠, 𝑎) → 𝑞∗(𝑠, 𝑎)

(as defined by (12.1)) as 𝑛 → ∞ for all (𝑠, 𝑎) ∈ 𝒮 ×𝒜 with probability one.

Sketch of the proof. The main idea is to construct an artificial Markov pro-
cess called the action-replay process (ARP) from the sequence of episodes
and the sequence of learning rates of the real process.
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The ARP is defined as follows. It has the same discount factor as the
real process. Its state space is (𝑠, 𝑛), where 𝑠 is either a state of the real
process or a new, absorbing and terminal state, and 𝑛 ∈ ℕ is an index
whose significance is discussed below. The action space is the same as the
real process.

Action 𝑎 at state (𝑠, 𝑛1) in the ARP is performed as follows. All tran-
sitions observed during learning are recorded in a sequence consisting of
tuples

𝑇𝑡 ∶= (𝑠𝑡, 𝑎𝑡, 𝑠′𝑡, 𝑟′𝑡, 𝛼𝑡).
Here 𝑎𝑡 is the action taken in state 𝑠𝑡 yielding the new state 𝑠′𝑡 and the reward
𝑟′𝑡 while using the learning rate 𝛼𝑡. To perform action 𝑎 at state (𝑠, 𝑛1) in the
ARP, all transitions after and including transition 𝑛1 are eliminated and not
considered further. Starting at transition 𝑛1−1 and counting down, the first
transition 𝑇𝑡 = (𝑠𝑡, 𝑎𝑡, 𝑠′𝑡, 𝑟′𝑡, 𝛼𝑡) before transition number 𝑛1 whose starting
state 𝑠𝑡 and action 𝑎𝑡 match (𝑠, 𝑎) is found and its index is called 𝑛2, i.e., 𝑛2 is
the largest index less than 𝑛1 such that (𝑠, 𝑎) = (𝑠𝑛2

, 𝑎𝑛2
). With probability

𝛼𝑛2
, the transition 𝑇𝑛2

= (𝑠𝑛2
, 𝑎𝑛2

, 𝑠′𝑛2
, 𝑟′𝑛2

, 𝛼𝑛2
) is replayed. Otherwise,

with probability 1 − 𝛼𝑛2
, the search is repeated towards the beginning. If,

however, there is no such 𝑛2, i.e., if there is no matching state-action pair,
the reward 𝑟′𝑛1

= 𝑄0(𝑠, 𝑎) of transition 𝑇𝑛1
is recorded and the episode in

the ARP stops in an absorbing, terminal state.
Replaying a transition 𝑇𝑛2

in the ARP is defined to mean that the ARP
state (𝑠, 𝑛1) is followed by the state (𝑠′𝑛2

, 𝑛2 − 1); the state 𝑠 = 𝑠𝑛2
was

followed by the state 𝑠′𝑛2
in the real process after taking action 𝑎 = 𝑎𝑛2

.
The next transition in the ARP is found by following this search process

towards the beginning of the transitions recorded during learning, and so
forth. The ARP episode ultimately terminates after a finite number of steps,
since the index 𝑛 in its states (𝑠, 𝑛) decreases strictly monotonically. Because
of this construction, the ARP is a Markov decision process just as the real
process.

Having constructed the ARP, the proof proceeds in two steps recorded as
lemmata. The first lemma says that the approximations 𝑄𝑛(𝑠, 𝑎) calculated
during 𝑄-learning are the optimal action values for the ARP states and
actions. The rest of the lemmata say that the ARP converges to the real
process. We start with the first lemma.
Lemma 12.2. The optimal action values for ARP states (𝑠, 𝑛) and ARP
actions 𝑎 are 𝑄𝑛(𝑠, 𝑎), i.e.,

𝑄𝑛(𝑠, 𝑎) = 𝑄∗
ARP((𝑠, 𝑛), 𝑎) ∀(𝑠, 𝑎) ∈ 𝒮 ×𝒜 ∀𝑛 ∈ ℕ.

Proof. The proof is by induction with respect to 𝑛. Due to the construction
of the ARP, the action value 𝑄0(𝑠, 𝑎) is optimal, since it is the only possible
action value of (𝑠, 0) and 𝑎. In other words, the induction basis

𝑄0(𝑠, 𝑎) = 𝑄∗
ARP((𝑠, 0), 𝑎)
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holds true.
The show the induction step, we suppose that the action values 𝑄𝑛 as

calculated by the 𝑄-learning iteration are optimal action values for the ARP
at level 𝑛, i.e.,

𝑄𝑛(𝑠, 𝑎) = 𝑄∗
ARP((𝑠, 𝑛), 𝑎) ∀(𝑠, 𝑎) ∈ 𝒮 ×𝒜,

which implies
𝑉 ∗
ARP((𝑠, 𝑛)) = max

𝑎
𝑄𝑛(𝑠, 𝑎)

for the optimal state values 𝑉 ∗
ARP of the ARP at level 𝑛. (Note that the last

equation motivates the use of the maximum in 𝑄-learning.)
In order to perform action 𝑎 in state (𝑠, 𝑛 + 1), we consider two cases.

The first case is (𝑠, 𝑎) ≠ (𝑠𝑛, 𝑎𝑛). In this case, performing 𝑎 in state (𝑠, 𝑛+1)
is the same as performing 𝑎 in state (𝑠, 𝑛) by the definition of 𝑄-learning;
nothing changes in the second case in (12.1). Therefore we have

𝑄𝑛+1(𝑠, 𝑎) = 𝑄𝑛(𝑠, 𝑎) = 𝑄∗
ARP((𝑠, 𝑛), 𝑎) = 𝑄∗

ARP((𝑠, 𝑛 + 1), 𝑎)
∀(𝑠, 𝑎) ∈ 𝒮 ×𝒜 ⧵ {(𝑠𝑛, 𝑎𝑛)} ∀𝑛 ∈ ℕ.

The second case is (𝑠, 𝑎) = (𝑠𝑛, 𝑎𝑛). In this case, performing 𝑎𝑛 in the
state (𝑠𝑛, 𝑛 + 1) is equivalent

• to obtaining the reward 𝑟′𝑛 and the new state (𝑠′𝑛, 𝑛) with probability
𝛼𝑛 or

• to performing 𝑎𝑛 in the state (𝑠𝑛, 𝑛) with probability 1 − 𝛼𝑛.
The induction hypothesis and the definition of 𝑄-learning hence yield

𝑄∗
ARP((𝑠𝑛, 𝑛 + 1), 𝑎𝑛) = (1 − 𝛼𝑛)𝑄∗

ARP((𝑠𝑛, 𝑛), 𝑎𝑛) + 𝛼𝑛(𝑟′𝑛 + 𝛾𝑉 ∗
ARP((𝑠′𝑛, 𝑛))

= (1 − 𝛼𝑛)𝑄𝑛(𝑠𝑛, 𝑎𝑛) + 𝛼𝑛(𝑟′𝑛 + 𝛾max
𝑎

𝑄𝑛(𝑠′𝑛, 𝑎))
= 𝑄𝑛+1(𝑠𝑛, 𝑎𝑛) ∀𝑛 ∈ ℕ.

Both cases together mean that

𝑄𝑛+1(𝑠, 𝑎) = 𝑄∗
ARP((𝑠, 𝑛 + 1), 𝑎) ∀(𝑠, 𝑎) ∈ 𝒮 ×𝒜 ∀𝑛 ∈ ℕ,

which concludes the proof of the induction step.

The rest of the lemmata say that the ARP converges to the real process.
Here we prove only the first and second one; the rest are shown in [23].
Lemma 12.3. Consider a finite Markov process with a discount factor 𝛾 < 1
and bounded rewards. Also consider two episodes, both starting at state 𝑠
and followed by the same finite sequence of 𝑘 actions, before continuing with
any other actions. Then the difference of the values of the starting state 𝑠
in both episodes tends to zero as 𝑘 → ∞.
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Proof. The assertion follows because 𝛾 < 1 and the rewards are bounded.

Lemma 12.4. Consider the ARP defined above with states (𝑠, 𝑛) and call
𝑛 the level. Then, given any level 𝑛1 ∈ ℕ, there exists another level 𝑛2 ∈ ℕ,
𝑛2 > 𝑛1, such that the probability of reaching a level below 𝑛1 after taking
𝑘 ∈ ℕ actions starting from a level above 𝑛2 is arbitrarily small.

In other words, the probability of reaching any fixed level 𝑛1 after start-
ing at level 𝑛2 of the ARP tends to zero as 𝑛2 → ∞. Therefore there is
a sufficiently high level 𝑛2 from which 𝑘 actions can be performed with an
arbitrarily high probability of leaving the ARP episode above level 𝑛1.

Proof. We start by determining the probability 𝑃 of reaching a level below
𝑛1 starting from a state (𝑠, 𝑛) with 𝑛 > 𝑛1 and performing action 𝑎. Recall
that 𝑁(𝑖, 𝑠, 𝑎) is the index of the 𝑖-th time that action 𝑎 is taken in state 𝑠.
We define 𝑖1 to be the smallest index 𝑖 such that 𝑁(𝑖, 𝑠, 𝑎) ≥ 𝑛1 and 𝑖2 to be
the largest index 𝑖 such that 𝑁(𝑖, 𝑠, 𝑎) ≤ 𝑛2. We also define 𝛼𝑁(0,𝑠,𝑎) ∶= 1.
Then the probability is

𝑃 = (
𝑖2
∏
𝑖=𝑖1

(1 − 𝛼𝑁(𝑖,𝑠,𝑎)))
⏟⏟⏟⏟⏟⏟⏟⏟⏟

continue above level 𝑖1

𝑖1−1
∑
𝑗=0

𝛼𝑁(𝑗,𝑠,𝑎)

𝑖1−1
∏

𝑘=𝑗+1
(1 − 𝛼𝑁(𝑘,𝑠,𝑎))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
stop below level 𝑖1

.

The sum is less equal one, since it is the probability that the episode ends
(below level 𝑖1). Therefore we have the estimate

𝑃 ≤
𝑖2
∏
𝑖=𝑖1

(1 − 𝛼𝑁(𝑖,𝑠,𝑎)) ≤ exp(−
𝑖2
∑
𝑖=𝑖1

𝛼𝑁(𝑖,𝑠,𝑎)),

where the second inequality holds because the inequality 1 − 𝑥 ≤ exp(−𝑥)
for all 𝑥 ∈ [0, 1] has been applied to each term. Since the sum of the learning
rates diverges by assumption, we find that 𝑃 ≤ exp(−∑𝑖2

𝑖=𝑖1 𝛼𝑁(𝑖,𝑠,𝑎)) → 0
as 𝑛2 → ∞ and hence 𝑖2 → ∞.

Since the state and action spaces are finite, for each probability 𝜖 ∈ (0, 1],
there exists a level 𝑛2 such that starting above it from any state 𝑠 and
taking action 𝑎 leads to a level above 𝑛1 with probability at least 1−𝜖. This
argument can be applied 𝑘 times for each action, and the probability 𝜖 can
be chosen small enough such that the overall probability of reaching a level
below 𝑛1 after taking 𝑘 actions becomes arbitrarily small, which concludes
the proof.

Before stating the next lemma, we denote the transition probabilities of
the ARP by 𝑝ARP((𝑠′, 𝑛′) ∣ (𝑠, 𝑛), 𝑎) and its expected rewards by 𝑅𝑛(𝑠, 𝑎).
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We also define the probability

𝑝𝑛(𝑠′ ∣ 𝑠, 𝑎) ∶=
𝑛−1
∑
𝑛′=1

𝑝ARP((𝑠′, 𝑛′) ∣ (𝑠, 𝑛), 𝑎)

that performing action 𝑎 at state (𝑠, 𝑛) (at level 𝑛) in the ARP leads to the
state 𝑠′ at a lower level.
Lemma 12.5. With probability one, the transition probabilities 𝑝𝑛(𝑠′ ∣ 𝑠, 𝑎)
at level 𝑛 and the expected rewards 𝑅𝑛(𝑠, 𝑎) at level 𝑛 of the ARP converge
to the transition probabilities and expected rewards of the real process as the
level 𝑛 tends to infinity.

Sketch of the proof. The proof of this lemma [23, Lemma B.3] relies on a
standard theorem in stochastic convergence (see, e.g., [24, Theorem 2.3.1]),
which states that if random variables 𝑋𝑛 are updated according to

𝑋𝑛+1 ∶= 𝑋𝑛 + 𝛽𝑛(𝜉𝑛 −𝑋𝑛),

where 𝛽𝑛 ∈ [0, 1), ∑∞
𝑛=1 𝛽𝑛 = ∞, ∑∞

𝑛=1 𝛽2
𝑛 < ∞, and the random variables

𝜉𝑛 are bounded and have mean 𝜉, then

𝑋𝑛 → 𝜉 as 𝑛 → ∞ with probability one.

This theorem is applied to the two update formulae for the transition
probabilities and expected rewards for going from occurrence 𝑖 + 1 to oc-
currence 𝑖. Since there is only a finite number of states and actions, the
convergence is uniform.

Lemma 12.6. Consider episodes of 𝑘 ∈ ℕ actions in the ARP and in the
real process. If the transition probabilities 𝑝𝑛(𝑠′ ∣ 𝑠, 𝑎) and the expected
rewards 𝑅𝑛(𝑠, 𝑎) at appropriate levels of the ARP for each of the actions
are sufficiently close to the transition probabilities 𝑝(𝑠′ ∣ 𝑠, 𝑎) and expected
rewards 𝑅(𝑠, 𝑎) of the real process for all actions 𝑎, for all states 𝑠, and for
all states 𝑠′, then the value of the episode in the ARP is close to its value
in the real process.

Sketch of the proof. The difference in the action values of a finite number 𝑘
of actions between the ARP and the real process grows at most quadratically
with 𝑘. Therefore, if the transition probabilities and mean rewards are
sufficiently close, the action values must also be close.

Using these lemmata, we can finish the proof of the theorem. The idea
is that the ARP tends towards the real process and hence its optimal action
values do as well. The values 𝑄𝑛(𝑠, 𝑎) are the optimal action values for
level 𝑛 of the ARP by Lemma 12.2, and therefore they tend to 𝑄∗(𝑠, 𝑎).
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More precisely, we denote the bound of the rewards by 𝑅 ∈ ℝ+
0 such that

|𝑟𝑛| ≤ 𝑅 for all 𝑛 ∈ ℕ. Without loss of generality, it can be assumed that
𝑄0(𝑠, 𝑎) < 𝑅/(1 − 𝛾) and that 𝑅 ≥ 1. For an arbitrary 𝜖 ∈ ℝ+, we choose
𝑘 ∈ ℕ such that

𝛾𝑘 𝑅
1 − 𝛾 < 𝜖

6
holds.

By Lemma 12.5, with probability one, it is possible to find a sufficiently
large 𝑛1 ∈ ℕ such that the inequalities

|𝑝𝑛(𝑠′ ∣ 𝑠, 𝑎) − 𝑝(𝑠′ ∣ 𝑠, 𝑎)| < 𝜖
3𝑘(𝑘 + 1)𝑅,

|𝑅𝑛(𝑠, 𝑎) − 𝑅(𝑠, 𝑎)| < 𝜖
3𝑘(𝑘 + 1)

hold for the differences between the transition probabilities and expected
rewards of the ARP and the real process for all 𝑛 > 𝑛1 and for all actions 𝑎,
for all states 𝑠, and for all states 𝑠′.

By Lemma 12.4, it is possible to find a sufficiently large 𝑛2 ∈ ℕ such
that for all 𝑛 > 𝑛2 the probability of reaching a level lower than 𝑛1 after
taking 𝑘 actions is less than min{𝜖(1− 𝛾)/6𝑘𝑅, 𝜖/3𝑘(𝑘+ 1)𝑅}. This implies
that the inequalities

|𝑝′𝑛(𝑠′ ∣ 𝑠, 𝑎) − 𝑝(𝑠′ ∣ 𝑠, 𝑎)| < 2𝜖
3𝑘(𝑘 + 1)𝑅,

|𝑅′
𝑛(𝑠, 𝑎) − 𝑅(𝑠, 𝑎)| < 2𝜖

3𝑘(𝑘 + 1)

hold, where the primes on the probabilities indicate that they are conditional
on the level of the ARP after 𝑘 actions being greater than 𝑛1.

Then, by Lemma 12.6, the difference between the value𝑄ARP((𝑠, 𝑛), 𝑎1,… , 𝑎𝑘)
of performing actions 𝑎1,… , 𝑎𝑘 at state (𝑠, 𝑛) in the ARP and the value
𝑄(𝑠, 𝑎1,… , 𝑎𝑘) of performing these actions in the real process is bounded by
the inequality

|𝑄ARP((𝑠, 𝑛), 𝑎1,… , 𝑎𝑘) − 𝑄(𝑠, 𝑎1,… , 𝑎𝑘)|

< 𝜖(1 − 𝛾)
6𝑘𝑅

2𝑘𝑅
1 − 𝛾 + 2𝜖

3𝑘(𝑘 + 1)
𝑘(𝑘 + 1)

2 = 2𝜖
3 .

The first term is the difference if the conditions for Lemma 12.4 are not
satisfied, since the cost of reaching a level below 𝑛1 is bounded by 2𝑘𝑅/(1−
𝛾). The second term is the difference from Lemma 12.6 stemming from
imprecise transition probabilities and expected rewards.

By Lemma 12.3, the difference due to taking only 𝑘 actions is less than
𝜖/6 for both the ARP and the real process.
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Since the inequality above applies to any sequence of actions, it applies
in particular to a sequence of actions optimal for either the ARP or the real
process. Therefore the estimate

|𝑄∗
ARP((𝑠, 𝑛), 𝑎) − 𝑄∗(𝑠, 𝑎)| < 𝜖

holds. In conclusion, 𝑄𝑛(𝑠, 𝑎) → 𝑄∗(𝑠, 𝑎) as 𝑛 → ∞ with probability one,
which concludes the proof of the theorem.

Remark 12.7 (the non-discounted case 𝛾 = 1 with absorbing goal states). If
the discount factor 𝛾 = 1, but the Markov process has absorbing goal states,
the proof can be modified [23, Section 4]. The certainty of being trapped in
an absorbing goal state then plays the role of 𝛾 < 1 and ensures that the
value of each state is bounded under any policy and that Lemma 12.3 holds.
Remark 12.8 (action replay and experience replay). The assumption that
all pairs of states and actions occur an infinite number of times during
learning is crucial for the proof. The proof also suggests that convergence
is faster if the occurrences of states and actions are equidistributed. This
fact motivates the use of action or experience replay. Experience replay is a
method (not limited to be used in conjunction with 𝑄-learning) which keeps
a cache of states and actions that have been visited and which are replayed
during learning in order to ensure that the whole space is sampled in an
equidistributed manner. This is beneficial when the states of the Markov
chain are highly correlated. Experience replay was used, e.g., in [3]. Cf.
Remark 7.4.

12.3 Convergence of the Discrete Method Proved
Using Fixed Points

In [25], the convergence of 𝑄-learning and TD(𝜆) was shown by viewing
the algorithms as certain stochastic processes and applying techniques of
stochastic approximation and a fixed-point theorem. The same line of rea-
soning can be found for 𝑄-learning in [26] and [21, Section 5.6].

The first theorem below is the convergence result for the stochastic pro-
cess. The following two theorems are convergence results for 𝑄-learning and
TD(𝜆) that use the first theorem.

Theorem 12.9 (convergence of a stochastic process [25]). The stochastic
process

Δ𝑡+1(𝑠) ∶= (1 − 𝛼𝑡(𝑠))Δ𝑡(𝑠) + 𝛽𝑡(𝑠)𝐹𝑡(𝑠) (12.2)
converges to zero almost surely if the following assumptions hold.

1. The state space is finite.
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2. The equalities and inequalities

∑
𝑡

𝛼𝑡 = ∞,

∑
𝑡

𝛼2
𝑡 < ∞,

∑
𝑡

𝛽𝑡 = ∞,

∑
𝑡

𝛽2
𝑡 < ∞,

𝔼[𝛽𝑡 ∣ 𝑃𝑡] ≤ 𝔼[𝛼𝑡 ∣ 𝑃𝑡]

are satisfied uniformly and almost surely.

3. The inequality

‖𝔼[𝐹𝑡(𝑠) ∣ 𝑃𝑡]‖𝑊 ≤ 𝛾‖Δ𝑡‖𝑊 ∃𝛾 ∈ (0, 1)

holds.

4. The inequality

𝕍[𝐹𝑡(𝑠) ∣ 𝑃𝑡] ≤ 𝐶(1 + ‖Δ𝑡‖𝑊 )2 ∃𝐶 ∈ ℝ+

holds.

Here 𝑃𝑡 ∶= {Δ𝑡,Δ𝑡−1,… , 𝐹𝑡−1, 𝐹𝑡−2,… , 𝛼𝑡−1, 𝛼𝑡−2,… , 𝛽𝑡−1, 𝛽𝑡−2,…} denotes
the past in iteration 𝑛. The values 𝐹𝑡(𝑠), 𝛼𝑡, and 𝛽𝑡 may depend on the past
𝑃𝑡 as long as the assumptions are satisfied. Furthermore, ‖Δ𝑡(𝑠)‖𝑊 denotes
the weighted maximum norm ‖Δ𝑡‖𝑊 ∶= max𝑠 |Δ𝑡(𝑠)/𝑊(𝑠)|.

Proof. The proof uses three lemmata.
Lemma 12.10. The stochastic process

𝑤𝑡+1(𝑠) ∶= (1 − 𝛼𝑡(𝑠))𝑤𝑡(𝑠) + 𝛽𝑡(𝑠)𝑟𝑛(𝑠),

where all random variables may depend on the past 𝑃𝑡, converges to zero
with probability one if the following conditions are satisfied.

1. The step sizes 𝛼𝑡(𝑠) and 𝛽𝑡(𝑠) satisfy the equalities and inequalities
∑𝑡 𝛼𝑡(𝑠) = ∞, ∑𝑡 𝛼𝑡(𝑠)2 < ∞, ∑𝑡 𝛽𝑡(𝑠) = ∞, and ∑𝑡 𝛽𝑡(𝑠)2 < ∞
uniformly.

2. 𝔼[𝑟𝑡(𝑠) ∣ 𝑃𝑡] = 0 and there exists a constant 𝐶 ∈ ℝ+ such that 𝔼[𝑟𝑡(𝑠)2 ∣
𝑃𝑡] ≤ 𝐶 with probability one.

Classic (Dvoretzky 1956).
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Lemma 12.11. Consider the stochastic process

𝑋𝑡+1(𝑠) = 𝐺𝑡(𝑋𝑡, 𝑠),

where
𝐺𝑡(𝛽𝑋𝑡, 𝑠) = 𝛽𝐺𝑡(𝑋𝑡, 𝑠).

Suppose that if the norm ‖𝑋𝑡‖ were kept bounded by scaling in all iterations,
then 𝑋𝑡 would converge to zero with probability one. Then the original
stochastic process converges to zero with probability one.
Lemma 12.12. The stochastic process

𝑋𝑡+1(𝑠) = (1 − 𝛼(𝑠))𝑋𝑡(𝑠) + 𝛾𝛽𝑡(𝑠)‖𝑋𝑡‖

converges to zero with probability one if the following conditions are satisfied.

1. The state space 𝒮 is finite.

2. The step sizes 𝛼𝑡(𝑠) and 𝛽𝑡(𝑠) satisfy the equalities and inequalities
∑𝑡 𝛼𝑡(𝑠) = ∞, ∑𝑡 𝛼𝑡(𝑠)2 < ∞, ∑𝑡 𝛽𝑡(𝑠) = ∞, and ∑𝑡 𝛽𝑡(𝑠)2 < ∞
uniformly.

3. The step sizes satisfy the inequality

𝔼[𝛽𝑡(𝑠)] ≤ 𝔼[𝛼𝑡(𝑠)]

uniformly with probability one.

Based on these three lemmata, we continue with the proof of the theorem.
The stochastic process Δ𝑡(𝑠) can be decomposed into two processes

Δ𝑡(𝑠) = 𝛿𝑡(𝑠) + 𝑤𝑡(𝑠)

by defining

𝑟𝑡(𝑠) ∶= 𝐹𝑡(𝑠) − 𝔼[𝐹𝑡(𝑠) ∣ 𝑃𝑡],
𝛿𝑡+1(𝑠) ∶= (1 − 𝛼𝑡(𝑠))𝛿𝑡(𝑠) + 𝛽𝑡(𝑠)𝔼[𝐹𝑡(𝑠) ∣ 𝑃𝑡],
𝑤𝑡+1(𝑠) ∶= (1 − 𝛼𝑡(𝑠))𝑤𝑛(𝑠) + 𝛽𝑡(𝑠)𝑟𝑡(𝑠).

Applying the lemmata to these two processes finishes the proof.

When the last theorem is applied, the stochastic process Δ𝑡 is usually the
difference between the iterates generated by an algorithm and an optimal
value such as the optimal action-value function characterized by the Bellman
optimality equation..

The first application of the last theorem is the convergence of 𝑄-learning.
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Theorem 12.13 (convergence of 𝑄-learning). The 𝑄-learning iterates

𝑄𝑡+1(𝑠, 𝑎) ∶= (1 − 𝛼𝑡(𝑠, 𝑎))𝑄𝑡(𝑠𝑡, 𝑎𝑡) + 𝛼𝑡(𝑠, 𝑎)(𝑟𝑡+1 + 𝛾max
𝑎

𝑄𝑡(𝑠𝑡+1, 𝑎)),
(12.3)

where 𝛼𝑡 ∶ 𝒮 × 𝒜 → [0, 1), converge to the optimal action-value function 𝑞∗
if the following assumptions hold.

1. The state space 𝒮 and the action space 𝒜 are finite.

2. The equality ∑𝑡 𝛼𝑡(𝑠, 𝑎) = ∞ and the inequality ∑𝑡 𝛼𝑡(𝑠, 𝑎)2 < ∞
hold for all (𝑠, 𝑎) ∈ 𝒮 ×𝒜.

3. The variance 𝕍[𝑟𝑡] of the rewards is bounded.

4. In the case 𝛾 = 1, all episodes must almost surely terminate in a
terminal state with zero reward.

Remark 12.14. The difference between the two 𝑄-learning iterations (12.1)
and (12.3) is in the step sizes 𝛼𝑡. In the first form (12.1), the step size 𝛼𝑡
is a real number and it is clear that 𝑄𝑡 and 𝑄𝑡+1 differ only in their values
for a single argument pair (𝑠, 𝑎). In the second form (12.3), the step size 𝛼𝑡
is a function of 𝑠 and 𝑎. The assumption ∑𝑡 𝛼𝑡(𝑠, 𝑎) = ∞ (and the bound
0 ≤ 𝛼𝑡(𝑠, 𝑎) < 1 for all 𝑠 and 𝑎) again ensures that each pair (𝑠, 𝑎) is visited
infinitely often (as in Theorem 12.1).

Proof. The basic idea in applying Theorem 12.9, where the stochastic pro-
cess converges to zero, is to consider the difference between the stochastic
process calculated by the algorithm and the supposed limit value, which is
characterized here by the Bellman optimality equation.

We start by defining the operator 𝐾 ∶ (𝒮 ×𝒜 → ℝ) → ℝ as

(𝐾𝑞)(𝑠, 𝑎) ∶= ∑
𝑠′

𝑝(𝑠′ ∣ 𝑠, 𝑎)(𝑟(𝑠, 𝑎, 𝑠′) + 𝛾max
𝑎′

𝑞(𝑠′, 𝑎′)).

Recall that the expected reward is given by

𝑟(𝑠, 𝑎, 𝑠′) = 𝔼[𝑅𝑡 ∣ 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎, 𝑆𝑡 = 𝑠′] = ∑
𝑟∈ℛ

𝑝(𝑠′, 𝑟 ∣ 𝑠, 𝑎)
𝑝(𝑠′ ∣ 𝑠, 𝑎)

(see (2.3)). To show that 𝐾 is a contraction with respect to the maximum
norm (with respect to both 𝑠 and 𝑎), we calculate

‖𝐾𝑞1 −𝐾𝑞2‖∞ = max
𝑠, 𝑎

∣∑
𝑠′

𝑝(𝑠′ ∣ 𝑠, 𝑎)(𝑟(𝑠, 𝑎, 𝑠′) + 𝛾max
𝑎′

𝑞1(𝑠′, 𝑎′) − 𝑟(𝑠, 𝑎, 𝑠′) − 𝛾max
𝑎′

𝑞2(𝑠′, 𝑎′))∣

≤ 𝛾max
𝑠, 𝑎

∑
𝑠′

𝑝(𝑠′ ∣ 𝑠, 𝑎)∣max
𝑎′

𝑞1(𝑠′, 𝑎′) −max
𝑎′

𝑞2(𝑠′, 𝑎′)∣

≤ 𝛾max
𝑠, 𝑎

∑
𝑠′

𝑝(𝑠′ ∣ 𝑠, 𝑎)max
𝑠″, 𝑎′

|𝑞1(𝑠″, 𝑎′) − 𝑞2(𝑠″, 𝑎′)|
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= 𝛾max
𝑠, 𝑎

∑
𝑠′

𝑝(𝑠′ ∣ 𝑠, 𝑎)‖𝑞1 − 𝑞2‖∞

= 𝛾‖𝑞1 − 𝑞2‖∞.
In summary,

‖𝐾𝑞1 −𝐾𝑞2‖∞ ≤ 𝛾‖𝑞1 − 𝑞2‖∞. (12.4)
The Bellman optimality equation (2.8) for 𝑞∗ implies that 𝑞∗ is a fixed

point of 𝐾, i.e.,
𝐾𝑞∗ = 𝑞∗. (12.5)

In order to relate the iteration (12.3) to the stochastic process in Theo-
rem 12.9, we define

𝛽𝑡 ∶= 𝛼𝑡,
Δ𝑡(𝑠, 𝑎) ∶= 𝑄𝑡(𝑠, 𝑎) − 𝑞∗(𝑠, 𝑎),
𝐹𝑡(𝑠, 𝑎) ∶= 𝑟𝑡+1 + 𝛾max

𝑎
𝑄𝑡(𝑠𝑡+1, 𝑎) − 𝑞∗(𝑠, 𝑎).

With these definitions, the 𝑄-learning iteration (12.3) and the stochastic
process (12.2) are identical.

The expected value of 𝐹𝑡(𝑠, 𝑎) given the past 𝑃𝑡 as it appears in Theo-
rem 12.9 is

𝔼[𝐹𝑡(𝑠, 𝑎) ∣ 𝑃𝑡] = ∑
𝑠′

𝑝(𝑠′, 𝑟𝑡+1 ∣ 𝑠, 𝑎)(𝑟𝑡+1 + 𝛾max
𝑎

𝑄𝑡(𝑠′, 𝑎) − 𝑞∗(𝑠, 𝑎))

= (𝐾𝑄𝑡)(𝑠, 𝑎) − 𝑞∗(𝑠, 𝑎)
= (𝐾𝑄𝑡)(𝑠, 𝑎) − (𝐾𝑞∗)(𝑠, 𝑎) ∀(𝑠, 𝑎) ∈ 𝒮 ×𝒜,

where the last equation follows from (12.5).
Using (12.4), this yields

‖𝔼[𝐹𝑡(𝑠, 𝑎) ∣ 𝑃𝑡]‖∞ ≤ 𝛾‖𝑄𝑡 − 𝑞∗‖∞ = 𝛾‖Δ𝑡‖∞,
which means that the third assumption of Theorem 12.9 is satisfied if 𝛾 < 1.

In order to check the fourth assumption Theorem 12.9, we calculate

𝕍[𝐹𝑡(𝑠, 𝑎) ∣ 𝑃𝑡] = 𝔼[(𝑟𝑡+1 + 𝛾max
𝑎

𝑄𝑡(𝑠𝑡+1, 𝑎) − 𝑞∗(𝑠, 𝑎) − ((𝐾𝑄𝑡)(𝑠, 𝑎) − 𝑞∗(𝑠, 𝑎)))2]

= 𝔼[(𝑟𝑡+1 + 𝛾max
𝑎

𝑄𝑡(𝑠𝑡+1, 𝑎) − (𝐾𝑄𝑡)(𝑠, 𝑎))
2]

= 𝕍[𝑟𝑡+1 + 𝛾max
𝑎

𝑄𝑡(𝑠𝑡+1, 𝑎) ∣ 𝑃𝑡].

Since the variance 𝕍[𝑟𝑡] of the rewards is bounded by the third assumption,
we hence find

𝕍[𝐹𝑡(𝑠, 𝑎) ∣ 𝑃𝑡] ≤ 𝐶(1 + ‖Δ𝑡‖𝑊 )2 ∃𝐶 ∈ ℝ+.
In the case 𝛾 = 1, the usual assumptions that ensure that all episodes

are finite are necessary.
In summary, all assumptions of Theorem 12.9 are satisfied.
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The second application of Theorem 12.9 is the convergence of TD(𝜆).

Theorem 12.15 (convergence of TD(𝜆)). Suppose that the lengths of the
episodes are finite, that there is no inaccessible state in the distribution of
the starting states, that the reward distribution has finite variance, that the
step sizes satisfy ∑𝑡 𝛼𝑡(𝑠) = ∞ and ∑𝑡 𝛼𝑡(𝑠)2 < ∞, and that 𝛾𝜆 < 1 holds
for 𝛾 ∈ [0, 1] and 𝜆 ∈ [0, 1]. Then the iterates 𝑉𝑡 in the TD(𝜆) algorithm
almost surely converge to the optimal prediction 𝑣∗.

By extending the approach in [27, 28], convergence theorems for 𝑄-
learning for environments that change over time, but whose accumulated
changes remain bounded, were shown in [29].

12.4 Bibliographical and Historical Remarks
𝑄-learning was introduced in [10, page 95] and demonstrated at the example
of a route-finding problem and a Skinner box. A first convergence proof for
one-step 𝑄-learning was given there as well [10, Appendix 1]. An extended,
more detailed version of this proof was given in [23].

Problems
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Appendix A

Measure and Probability
Theory

A.1 Notation
The following notation is used throughout the book. The first definition
concerns ranges of integers.

Definition A.1 (range). The set {𝑚,… , 𝑛} of all integers between 𝑚 and 𝑛
is denoted by [𝑚∶𝑛].

The second notation assigns one and zero to true and false statements,
respectively.

Definition A.2 (Iverson bracket). The Iverson bracket of a statement is
defined as

JstatementK ∶= {1 if statement is true,
0 if statement is false.

A.2 Measures and Measure Spaces
In measure and probability theory, it is often convenient to augment the
real numbers by +∞ = ∞ and −∞. In order to save space, the arithmetic
operations on and the algebraic properties of the extended real numbers are
not discussed here.

Definition A.3 (extended real numbers). The extended real numbers are
the set ℝ ∪ {−∞,+∞} = [−∞,+∞].

The concept of a 𝜎-algebra is fundamental for the following definitions.
In the following, sets of sets and 𝜎-algebras in particular are denoted by
calligraphic letters.
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Definition A.4 (𝜎-algebra). Suppose Ω is a non-empty set. Then a subset
ℱ ⊂ 𝒫(Ω) of its power set 𝒫(Ω) is called a 𝜎-algebra over the universal set Ω
if it satisfies the following properties:

1. The set ℱ contains the universal set Ω, i.e., Ω ∈ ℱ.

2. The set ℱ is closed under complements, i.e., if 𝐴 ∈ ℱ, then also
Ω ⧵ 𝐴 ∈ ℱ.

3. The set ℱ is closed under countable unions, i.e., if 𝐴𝑖 ∈ ℱ for all
𝑖 ∈ ℕ, then also ⋃∞

𝑖=1𝐴𝑖 ∈ ℱ.

Since the 𝜎-algebraℱ is closed under complements and countable unions,
ℱ is also closed under countable intersections, i.e., if 𝐴𝑖 ∈ ℱ for all 𝑖 ∈ ℕ,
then also ⋂∞

𝑖=1𝐴𝑖 ∈ ℱ, by De Morgan’s law.
Given a universal set Ω, the set {∅,Ω}, also called the trivial 𝜎-algebra,

is the smallest possible 𝜎-algebra. The power set 𝒫(Ω) is the largest possible
𝜎-algebra over Ω. The smallest 𝜎-algebra that contains a subset 𝐴 ⊂ Ω is
{∅,𝐴,Ω ⧵ 𝐴,Ω}.

The most common used 𝜎-algebra over the real numbers is the Borel
𝜎-algebra over the real numbers. In order to define Borel 𝜎-algebras, we
need the definitions of a topological space and a 𝜎-operator.

Definition A.5 (topological space, topology, open set). A topological space
is a pair (Ω,𝒪) where Ω is a set and the topology 𝒪 is a set of subsets of Ω,
called the open sets, that satisfy the following properties:

1. The empty set and the set Ω are elements of the topology 𝒪, i.e., ∅ ∈ 𝒪
and Ω ∈ 𝒪.

2. Any (finite or infinite) union of elements of the topology 𝒪 is an ele-
ment of the topology 𝒪, i.e., any (finite or infinite) union of open sets
is again an open set.

3. The intersection of any finite number of elements of the topology 𝒪 is
an element of the topology 𝒪, i.e., any intersection of a finite number
of open sets is again an open set.

Definition A.6 (𝜎-operator, generator). Suppose that Ω is a set and that
the generator ℳ is a subset of its power set 𝒫(Ω). Then the 𝜎-operator is
defined as

𝜎(ℳ) ∶= ⋂
𝒜∈ℱ(ℳ)

𝒜,

where
ℱ(ℳ) ∶= {𝒜 ⊂ 𝒫(Ω) ∶ ℳ ⊂ 𝒜∧𝒜 is a 𝜎-algebra}.
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The set ℱ(ℳ) contains all 𝜎-algebras that contain ℳ. Since the inter-
section of 𝜎-algebras is again a 𝜎-algebra, the set 𝜎(ℳ) of subsets of Ω is
the smallest 𝜎-algebra that contains ℳ ⊂ 𝒫(Ω). The set 𝜎(ℳ) is uniquely
determined and it is called the 𝜎-algebra generated by ℳ.
Definition A.7 (Borel 𝜎-algebra, Borel sets). Suppose (Ω,𝒪) is a topolog-
ical space. The 𝜎-algebra ℬ((Ω,𝒪)) ∶= 𝜎(𝒪) generated by the 𝜎-operator
applied to the open sets 𝒪 is called the Borel 𝜎-algebra over Ω. If the open
sets 𝒪 are implicitly known, it is customary to write ℬ(Ω) for ℬ((Ω,𝒪)).
The elements of a Borel 𝜎-algebra are called Borel sets.

By the definition of the 𝜎-operator and the discussion above, the Borel
𝜎-algebra is the smallest 𝜎-algebra that contains all open sets 𝒪 given a
topological space (Ω,𝒪).

The canonical topological space (ℝ,𝒪) over the real numbers is the one
whose topology 𝒪 consists of the open intervals (𝑎, 𝑏) with rational endpoints
𝑎, 𝑏 ∈ ℚ. The Borel 𝜎-algebra ℬ((ℝ,𝒪)) thus generated does not contain all
subsets of ℝ; in fact, it can be shown that ℝ andℬ((ℝ,𝒪)) are equinumerous,
while the power set of ℝ has a larger cardinality than ℝ.

Since it is the most common one, the Borel 𝜎-algebra ℬ((ℝ,𝒪)) is usually
simply called the Borel 𝜎-algebra over ℝ and denoted by ℬ(ℝ).

As noted above, a Borel 𝜎-algebra 𝜎(ℳ) is uniquely determined by its
generator ℳ; however, different generators may generate the same Borel
𝜎-algebra. The Borel 𝜎-algebra ℬ(ℝ) is generated by

ℳ0 ∶= {𝐴 ⊂ ℝ ∶ 𝐴 ∈ 𝒪}, (A.1a)
ℳ1 ∶= {[𝑎, 𝑏] ⊂ ℝ ∶ 𝑎, 𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏}, (A.1b)
ℳ2 ∶= {[𝑎, 𝑏] ⊂ ℝ ∶ 𝑎, 𝑏 ∈ ℚ ∧ 𝑎 ≤ 𝑏}, (A.1c)
ℳ3 ∶= {(𝑎, 𝑏) ⊂ ℝ ∶ 𝑎, 𝑏 ∈ ℝ ∧ 𝑎 < 𝑏}, (A.1d)
ℳ4 ∶= {(𝑎, 𝑏) ⊂ ℝ ∶ 𝑎, 𝑏 ∈ ℚ ∧ 𝑎 < 𝑏}, (A.1e)
ℳ5 ∶= {(𝑎, 𝑏] ⊂ ℝ ∶ 𝑎, 𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏}, (A.1f)
ℳ6 ∶= {(𝑎, 𝑏] ⊂ ℝ ∶ 𝑎, 𝑏 ∈ ℚ ∧ 𝑎 ≤ 𝑏}, (A.1g)
ℳ7 ∶= {(−∞, 𝑎] ⊂ ℝ ∶ 𝑎 ∈ ℝ}, (A.1h)
ℳ8 ∶= {(−∞, 𝑎] ⊂ ℝ ∶ 𝑎 ∈ ℚ}, (A.1i)
ℳ9 ∶= {(−∞, 𝑎) ⊂ ℝ ∶ 𝑎 ∈ ℝ}, (A.1j)
ℳ10 ∶= {(−∞, 𝑎) ⊂ ℝ ∶ 𝑎 ∈ ℚ}. (A.1k)

When working with cumulative distribution functions, the generators ℳ7,
ℳ8, ℳ9, and ℳ10 are most useful and can be used with rational endpoints
together with approximation arguments.

Next, we define measures and measure spaces.
Definition A.8 (measurable space). A measurable space is a pair (Ω,ℱ)
consisting of a non-empty set Ω and a 𝜎-algebra ℱ over Ω.
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Definition A.9 (measurable function). Suppose (Ω,ℱ) and (Ψ,𝒢) are mea-
surable spaces. An (ℱ,𝒢)-measurable function from (Ω,ℱ) to (Ψ,𝒢) is a
function 𝑋∶ Ω → Ψ such that 𝑋−1(𝐺) ∈ ℱ for every 𝐺 ∈ 𝒢.

The set of measurable functions is closed under algebraic operations. It
is also closed under the pointwise sequential limits

lim inf
𝑛→∞

𝑓𝑛, lim sup
𝑛→∞

𝑓𝑛, sup
𝑛→∞

𝑓𝑛,

i.e., these limits are measurable if the functions 𝑓𝑛 in the sequence ⟨𝑓𝑛⟩𝑛∈ℕ
are measurable.
Definition A.10 (measure). Suppose (Ω,ℱ) is a measurable space. A func-
tion 𝜇∶ ℱ → [0,∞] is called a measure if it satisfies the following properties:

1. The measure of the empty set is zero, i.e., 𝜇(∅) = 0.
2. The function 𝜇 is countably additive (or 𝜎-additive), i.e., if {𝐴𝑖}∞𝑖=1 ⊂

ℱ is a countable set of pairwise disjoint sets 𝐴𝑖 ∈ ℱ, then

𝜇(
∞
⋃
𝑖=1

𝐴𝑖) =
∞
∑
𝑖=1

𝜇(𝐴𝑖).

Definition A.11 (measure space). A measure space is a triple (Ω,ℱ, 𝜇)
such that (Ω,ℱ) is a measurable space and the function 𝜇 is a measure on
(Ω,ℱ).

The push-forward measure transfers or pushes forward a measure from
one measurable space to another by using a measurable function.
Definition A.12 (push-forward measure). Suppose that (Ω1,ℱ1) and (Ω2,ℱ2)
are measurable spaces, that 𝑓 ∶ Ω1 → Ω2 is a measurable function, and that
𝜇∶ Ω1 → [0,∞] is a measure. Then the push-forward measure of 𝜇 is defined
to be the measure

𝜇 ∘ 𝑓−1 ∶ Ω2 → [0,∞],
also written as

𝑓#𝜇 ∶= 𝜇 ∘ 𝑓−1.
The push-forward measure has an application in the well-known change-

of-variables formula

∫
Ω1

𝑔 ∘ 𝑓d𝜇 = ∫
Ω2

𝑔d(𝑓#𝜇).

The integrals here are Lebesgue integrals (see Section A.3).
In measure and probability theory as well as in integration, statements

which are true everywhere except on sets whose measures vanishe often
occur. This motivates the following definitions.
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Definition A.13 (null set). Suppose (Ω,ℱ, 𝜇) is a measure space. A set
𝑁 ∈ ℱ is called a null set with respect to the measure 𝜇, if 𝜇(𝑁) = 0.
Definition A.14 (almost all/everywhere/surely). Suppose (Ω,ℱ, 𝜇) is a
measure space. A statement is said to be true for almost all 𝑥 ∈ Ω or almost
everywhere/surely in Ω, if there exists a null set 𝑁 with respect to 𝜇 such
that the statement is true for all 𝑥 ∈ Ω ⧵ 𝑁 . In this case, we write

(∀𝜇𝑥 ∈ Ω∶ statement)
∶ ⟺ (∃𝑁 ∈ ℱ∶ 𝜇(𝑁) = 0 ∧ (∀𝑥 ∈ Ω ⧵ 𝑁 ∶ statement)).

A.3 The Lebesgue Integral
The Lebesgue integral plays an essential role in measure and probability
theory. In very general terms, the domain of the function to be integrated
is partitioned in order to define and to compute a Riemann (or Riemann-
Stieltjes) integral of the function, while the range of the function to be
integrated is partitioned in the Lebesgue integral. The Lebesgue integral
interacts better with taking limits of sequences of functions; results for this
situation are collected in Section A.5. Furthermore, the Lebesgue integral
is defined for a larger class of functions than the Riemann integral. For
example, the Dirichlet function

ℝ → {0, 1}, 𝑥 ↦ J𝑥 ∈ ℚK
is not Riemann integrable, but it is Lebesgue integrable (and has Lebesgue
integral zero).

In the following, two ways of constructing and defining the Lebesgue
integral will be discussed. The first (in Section A.3.1) is based on partitions
of the ranges of the functions and reduces the Lebesgue integral to a Riemann
integral. The second (in Section A.3.2) is based on so-called simple functions,
which provide discretizations of the areas under the graphs of the functions.

A.3.1 Construction and Definition Using the Riemann In-
tegral

As mentioned above, in Lebesgue integration, the classical method of ex-
haustion can be applied to horizontal slices that partition the range of the
function.

We start with a measure space (Ω,ℱ, 𝜇) (see Definition A.11). We recall
that by Definition A.9 measurable functions defined on this measure space
are functions such that the preimages of all sets in the 𝜎-algebra of the image
(measurable) space are in the 𝜎-algebra ℱ of the preimage (measurable)
space Ω. In particular, the preimages

{𝑥 ∈ Ω ∣ 𝑓(𝑥) ≥ 𝑦}, 𝑦 ∈ ℝ,
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of measurable real valued functions 𝑓 are elements of the 𝜎-algebra ℱ. In
other words, the measure 𝜇 assigns the lengths

𝜇({𝑥 ∈ Ω ∣ 𝑓(𝑥) ≥ 𝑦})

to the preimages, which we will use in the following.
We consider a non-negative measurable real valued function 𝑓 ∶ ℝ → ℝ+

in the (𝑥, 𝑦)-plane. At each point 𝑦 in the range of 𝑓 , thin horizontal slices
between 𝑦 and 𝑦 −d𝑦 contribute to the integral wherever the function value
𝑓(𝑥) is greater equal 𝑦 such that these slices lie between the 𝑥-axis and the
graph of the function. The area that is contributed to the integral at any
point 𝑦 in the range of 𝑓 is hence given by

𝜇({𝑥 ∈ ℝ ∣ 𝑓(𝑥) ≥ 𝑦})d𝑦.

Summing these contributions as a Riemann integral yields the following
definition.

Definition A.15 (Lebesgue integral (via Riemann integral)). Suppose that
(Ω,ℱ, 𝜇) is a measure space and that 𝑓 ∶ ℝ → ℝ+ is non-negative measurable
function. Its Lebesgue integral is then defined by

∫
Ω
𝑓d𝜇 ∶= ∫

∞

0
𝜇({𝑥 ∈ ℝ ∣ 𝑓(𝑥) ≥ 𝑦})d𝑦, (A.2)

where the integral on the right-hand side is an improper Riemann integral.

In this definition, 𝜇({𝑥 ∈ ℝ ∣ 𝑓(𝑥) ≥ 𝑦}) can be replaced by 𝜇({𝑥 ∈ ℝ ∣
𝑓(𝑥) > 𝑦}).

The following theorem is well-known in Riemann integration.

Theorem A.16. Suppose 𝑓 ∶ [𝑎, 𝑏] → ℝ is monotone. Then 𝑓 is Riemann
integrable on the interval [𝑎, 𝑏].

Since the integrand on the right-hand side in (A.2) is a non-negative and
monotone decreasing function, the improper Riemann integral exists and
has a value in the interval [0,∞).

In the next step, we extend these considerations from non-negative func-
tions to signed functions. If 𝑓 is a measurable function to the extended real
numbers, we define

𝑓+(𝑥) ∶= {𝑓(𝑥), 𝑓(𝑥) > 0,
0, 𝑓(𝑥) ≤ 0,

𝑓−(𝑥) ∶= {−𝑓(𝑥), 𝑓(𝑥) < 0,
0, 𝑓(𝑥) ≥ 0,
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both of which are non-negative and measurable. With these definitions, we
have

𝑓 = 𝑓+ − 𝑓−,
|𝑓| = 𝑓+ + 𝑓−,

which allows us to reduce the Lebesgue integrals of signed functions 𝑓 to
the Lebesgue integrals ∫𝑓+d𝜇 and ∫𝑓−d𝜇 of the non-negative functions 𝑓+

and 𝑓−.
Definition A.17 (Lebesgue integral of a measurable function). Suppose
𝑓 is a measurable function to the extended real numbers. If the Lebesgue
integral ∫𝑓+d𝜇 or the Lebesgue integral ∫𝑓−d𝜇 exists and is finite, i.e.,

∫
Ω
𝑓+d𝜇 < ∞ ∨ ∫

Ω
𝑓−d𝜇 < ∞,

then
∫
Ω
𝑓d𝜇 ∶= ∫

Ω
𝑓+d𝜇 −∫

Ω
𝑓−d𝜇

is called the Lebesgue integral of 𝑓 .
Lebesgue integrals have values in the extended real numbers. A function

is called Lebesgue integrable, if the area between its graph and the 𝑥-axis is
finite as expressed in the following definition.
Definition A.18 (Lebesgue integrable function). Suppose 𝑓 is a measurable
function to the extended real numbers defined on a measure space (Ω,ℱ, 𝜇).
It is called Lebesgue integrable with respect to 𝜇 if the integral

∫
Ω
|𝑓|d𝜇 < ∞

of its absolute value is finite.
The following theorem gives some important classes of Lebesgue mea-

surable functions including Riemann integrable ones.
Theorem A.19 (some classes of Lebesgue measurable functions). Contin-
uous functions, semicontinuous functions, step functions, monotone func-
tions, Riemann integrable functions, and functions of bounded variation are
Lebesgue measurable.

Complex valued functions are integrated by considering the real and
imaginary parts separately. If 𝑓 = 𝑓1+i𝑓2 for real valued integrable functions
𝑓1 and 𝑓2, then the Lebesgue integral of 𝑓 is defined by

∫
Ω
𝑓d𝜇 ∶= ∫

Ω
𝑓1d𝜇 + i∫

Ω
𝑓2d𝜇. (A.3)
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Furthermore, the function 𝑓 is Lebesgue integrable if and only if its absolute
value is Lebesgue integrable.

The Riemann integral with respect to an orientation is defined as ∫𝑎
𝑏 𝑓 ∶=

−∫𝑏
𝑎 𝑓 . In Lebesgue integration, there is no orientation, since the domains

of integration are sets. Still, if the domain is an interval 𝐼 ∶= [𝑎, 𝑏], we can
define

∫
𝑎

𝑏
𝑓d𝜇 ∶= −∫

[𝑎,𝑏]
𝑓d𝜇.

A.3.2 Construction and Definition Using Simple Functions
In the previous construction using the Riemann integral, we have used the
method of exhaustion in Definition A.15 twice: first for horizontal slices,
i.e., a partition of the range of the function, and then for the vertical slices
in the Riemann integral. The second construction and definition in this
section applies the method of exhaustion to both directions directly via so-
called simple functions, which are essentially a discretization of the area
between the graph of the function and the 𝑥-axis.

Again, we start with a measure space (Ω,ℱ, 𝜇) (see Definition A.11).
In order to discretize the area between the graph of the function and the
𝑥-axis, we consider the indicator functions

𝜒𝑆 ∶ Ω → {0, 1}, 𝑥 ↦ J𝑥 ∈ 𝑆K
of measurable sets 𝑆. The only possible value of an integral that is consistent
with the measure 𝜇 is

∫
Ω
𝜒𝑆d𝜇 ∶= 𝜇(𝑆),

which may be equal to ∞.
Using this first definition and the notion that the integral should be a

linear operator, we extend the definition of the Lebesgue integral to linear
combinations of indicator functions, the so-called simple functions.
Definition A.20 (simple function). A simple function is a (finite) linear
combination

𝑁
∑
𝑛=1

𝑎𝑛𝜒𝑆𝑛
,

where 𝑎𝑛 ∈ ℝ for all 𝑛 ∈ [1∶𝑁] and 𝑆𝑛, 𝑛 ∈ [1∶𝑁], are disjoint measurable
sets.

Simple functions are measurable.
For non-negative simple functions 𝑠, i.e., when the coefficients 𝑎𝑛 are

non-negative, we define

∫
Ω
𝑠d𝜇 = ∫

Ω
(

𝑁
∑
𝑛=1

𝑎𝑛𝜒𝑆𝑛
)d𝜇 ∶=

𝑁
∑
𝑛=1

𝑎𝑛∫
Ω
𝜒𝑆𝑛

d𝜇 =
𝑁
∑
𝑛=1

𝑎𝑛𝜇(𝑆𝑛)
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by linearity, which may be equal to ∞. Here the definition 0 ⋅∞ ∶= 0 is used
for the products. By the 𝜎-additivity of the measure 𝜇 (see Definition A.10),
the integral does not depend on the particular linear combination used to
represent the simple function.

If Ψ is a measurable subset of Ω, then we define the integral of a non-
negative simple function 𝑠 on Ψ by

∫
Ψ
𝑠d𝜇 ∶= ∫

Ω
𝜒Ψ𝑠d𝜇 ∶=

𝑁
∑
𝑛=1

𝑎𝑛𝜇(𝑆𝑛 ∩ Ψ).

In the next step, we extend the construction of the Lebesgue integral
from non-negative simple functions to non-negative measurable functions 𝑓
which take values in the extended real numbers.
Definition A.21 (Lebesgue integral (via simple functions)). Suppose 𝑓 is
a non-negative measurable function on a measurable subset Ψ of a measure
space (Ω,ℱ, 𝜇). Then its Lebesgue integral on Ψ is defined by

∫
Ψ
𝑓d𝜇 ∶= sup{∫

Ψ
𝑠d𝜇 ∣ 𝑠 is simple ∧ 0 ≤ 𝑠 ≤ 𝑓} .

The value of this integral may be equal to ∞. This definition and the
preceding one for non-negative simple functions coincide when non-negative
simple functions are integrated. Furthermore, it can be shown that Defini-
tion A.15 (via Riemann integrals) and Definition A.21 (via simple functions)
coincide.

The Lebesgue integral of signed functions is constructed as in Defini-
tion A.17 via the positive and negative parts 𝑓+ and 𝑓−, which are non-
negative. Furthermore, the Lebesgue integral of complex valued functions
is defined as in (A.3) via their real and imaginary parts.

A.3.3 Properties
We again suppose that (Ω,ℱ, 𝜇) is a measure space. For the purposes of
measure and probability theory, it is useful to define the equality of two
functions as equality almost everywhere/surely, i.e., they are equal if they
coincide outside a subset of measure zero.
Definition A.22 (equality of functions). Two functions 𝑓 and 𝑔 defined on
a measure space (Ω,ℱ, 𝜇) are called equal if they are equal almost every-
where/surely, i.e.,

𝑓 𝜇= 𝑔 ∶ ⟺ ∀𝜇𝑥 ∈ Ω∶ 𝑓(𝑥) = 𝑔(𝑥).
This equality relation is an equivalence relation. Analogously, we also

define 𝑓 < 𝑔, 𝑓 ≤ 𝑔, 𝑓 > 𝑔, and 𝑓 ≥ 𝑔.
With this definition of equality, equal functions have equal integrals if

the integrals exist.
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Theorem A.23 (integrals of equal functions). Suppose two functions 𝑓
and 𝑔 defined on a measure space (Ω,ℱ, 𝜇) are equal. Then 𝑓 is Lebesgue
integrable if and only if 𝑔 is Lebesgue integrable, and if their integrals exists,
then

𝑓 𝜇= 𝑔 ⟹ ∫
Ω
𝑓d𝜇 = ∫

Ω
𝑔d𝜇

holds.
Theorem A.24 (linearity of the Lebesgue integral). Suppose that 𝑓 and 𝑔
are two Lebesgue integrable functions defined on a measure space (Ω,ℱ, 𝜇)
and that 𝑎 and 𝑏 are two real numbers. Then the function 𝑎𝑓+𝑏𝑔 is Lebesgue
integrable, and the equality

∫
Ω
(𝑎𝑓 + 𝑏𝑔)d𝜇 = 𝑎∫

Ω
𝑓d𝜇 + 𝑏∫

Ω
𝑔d𝜇

holds.
Theorem A.25 (monotonicity of the Lebesgue integral). Suppose that 𝑓
and 𝑔 are two Lebesgue integrable functions defined on a measure space
(Ω,ℱ, 𝜇). If 𝑓 ≤ 𝑔 almost everywhere/surely, then the inequality

∫
Ω
𝑓d𝜇 ≤ ∫

Ω
𝑔d𝜇

holds.

A.4 The Radon-Nikodym Derivative
Before we can state the Radon-Nikodym theorem and define the Radon-
Nikodym derivative, two definitions are needed.
Definition A.26 (𝜎-finite measure). Suppose that (Ω,ℱ, 𝜇) is a measure
space. Then the measure 𝜇 is called a 𝜎-finite measure if the set Ω can be
covered by at most countably many measurable sets with finite measure, i.e.,
there exist sets 𝐴𝑛 with 𝜇(𝐴𝑛) < ∞ for all 𝑛 ∈ ℕ such that Ω = ⋃𝑛∈ℕ𝐴𝑛.
Definition A.27 (absolutely continuous). Suppose that (Ω,ℱ) is a mea-
surable space on which the measures 𝜇 and 𝜈 are defined. Then the measure
𝜇 is called absolutely continuous with respect to 𝜈 and we write 𝜇 ≪ 𝜈 if
𝜇(𝐴) = 0 for every set 𝐴 ∈ ℱ for which 𝜈(𝐴) = 0, i.e.,

𝜇 ≪ 𝜈 ∶ ⟺ (∀𝐴 ∈ ℱ∶ 𝜈(𝐴) = 0 ⟹ 𝜇(𝐴) = 0).

The absolute continuity of measures is reflexive and transitive, but not
antisymmetric, and hence it is a preorder and not a partial order.

Using 𝜎-finiteness and absolute continuity, we can state the following
theorem.
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Theorem A.28 (Radon-Nikodym). Suppose that (Ω,ℱ) is a measurable
space on which the 𝜎-finite measures 𝜇 and 𝜈 are defined. If 𝜇 ≪ 𝜈, then
there exists a ℱ-measurable function 𝑓 ∶ Ω → [0,∞) such that

∀𝐴 ∈ ℱ∶ 𝜇(𝐴) = ∫
𝐴
𝑓d𝜈

holds. The function 𝑓 is unique up to a null set with respect to 𝜈.
Since the equation in the theorem must hold for every measurable set 𝐴,

we can intuitively understand that the equation must hold for infinitesimal
elements d𝜇 and d𝜈 and we can informally write

d𝜇 = 𝑓d𝜈. (A.4)

From this point of view, the function value 𝑓 is the factor of proportionality
between 𝜇(𝐴) and 𝜈(𝐴). Hence the condition that 𝜇 must be absolutely
continuous with respect to 𝜈 becomes obvious. Suppose 𝜈(𝐴) = 0. If 𝜇(𝐴) ≠
0, then certainly no value 𝑓 that satisfies (A.4) can exist. Therefore 𝜈(𝐴) = 0
must imply 𝜇(𝐴) = 0.

An extension to finite valued signed measures 𝜈 holds. This theorem
makes the following definition possible.

Definition A.29 (Radon-Nikodym derivative). The 𝜈-almost unique func-
tion 𝑓 in Theorem A.28 is called the Radon-Nikodym derivative of 𝜇 with
respect to 𝜈 and written

𝑓 = d𝜇
d𝜈 .

Important properties of the Radon-Nikodym derivative are collected in
the following.

Theorem A.30 (properties of the Radon-Nikodym derivative). Suppose 𝜆,
𝜇, and 𝜈 are 𝜎-finite measures on the measurable space (Ω,ℱ).

1. Linearity: If 𝜇 ≪ 𝜆 and 𝜈 ≪ 𝜆, then
d(𝜇 + 𝜈)

d𝜆
𝜆= d𝜇

d𝜆 + d𝜈
d𝜆.

2. Chain rule: If 𝜈 ≪ 𝜇 ≪ 𝜆, then
d𝜈
d𝜆

𝜆= d𝜈
d𝜆

d𝜇
d𝜆.

3. In particular (choosing 𝜈 = 𝜆), if 𝜇 ≪ 𝜈 and 𝜈 ≪ 𝜇, then

d𝜇
d𝜈

𝜈= (d𝜈
d𝜇)

−1
.
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4. If 𝜇 ≪ 𝜆 and 𝑓 is a Lebesgue integrable function with respect to 𝜇,
then

∫
Ω
𝑓d𝜇 = ∫

Ω
𝑓 d𝜇d𝜆d𝜆.

5. If 𝜈 is a finite signed or complex measure, then
d|𝜈|
d𝜇 = ∣d𝜈d𝜇∣ .

A.5 Lebesgue Convergence Theorems
Fatou’s lemma, the Lebesgue monotone convergence theorem, and the Lebesgue
dominated convergence theorem are important results in the theory of Lebesgue
integration. Given a sequence ⟨𝑓𝑛⟩𝑛∈ℕ of functions, they answer the question
when the limit lim𝑛→∞ and Lebesgue integration commute. The results are
also important in probability theory, since they provide sufficient conditions
for the convergence of expected values of random variables.

The first result in this section is Fatou’s lemma, which shows that an
inequality holds when the limit lim inf𝑛→∞ and Lebesgue integration are
interchanged. The sequence ⟨𝑓𝑛⟩𝑛∈ℕ does not have to converge pointwise,
but the functions are supposed to be non-negative. (For definitions of lim inf
and lim sup, see Definition A.57).
Lemma A.31 (Fatou’s lemma). Suppose that (Ω,ℱ, 𝜇) is a measure space,
that 𝑋 ∈ ℱ, and that ⟨𝑓𝑛⟩𝑛∈ℕ is a sequence of (ℱ,ℬ(ℝ+

0 ))-measurable non-
negative functions 𝑓𝑛 ∶ 𝑋 → [0,∞]. Suppose further that 𝑓 ∶ 𝑋 → [0,∞]
is defined as 𝑓(𝑥) ∶= lim inf𝑛→∞ 𝑓𝑛(𝑥) for 𝜇-almost all 𝑥 ∈ 𝑋. Then the
function 𝑓 is (ℱ,ℬ(ℝ+

0 ))-measurable, and the inequality

∫
𝑋
𝑓d𝜇 = ∫

𝑋
lim inf
𝑛→∞

𝑓𝑛d𝜇 ≤ lim inf
𝑛→∞

∫
𝑋
𝑓𝑛d𝜇

holds.
An example for the strict inequality is the measure space Ω ∶= [0, 1] with

the Borel 𝜎-algebra and the Lebesgue measure. The functions are defined
by

𝑓𝑛(𝑥) ∶= {𝑛, 𝑥 ∈ [0, 1/𝑛),
0, otherwise.

Then the sequence ⟨𝑓𝑛⟩𝑛∈ℕ converges pointwise to the zero function, but each
function 𝑓𝑛 has integral one, leading to the strict inequality in Lemma A.31.

The reverse Fatou’s lemma shows that an inequality holds when the limit
lim sup𝑛→∞ and Lebesgue integration are interchanged. Again the sequence
⟨𝑓𝑛⟩𝑛∈ℕ does not have to converge pointwise, but now the functions are
supposed to be dominated by a majorant 𝑔.
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Lemma A.32 (reverse Fatou’s lemma). Suppose that (Ω,ℱ, 𝜇) is a measure
space, that 𝑋 ∈ ℱ, and that ⟨𝑓𝑛⟩𝑛∈ℕ is a sequence of (ℱ,ℬ(ℝ+

0 ))-measurable
functions 𝑓𝑛 ∶ 𝑋 → [−∞,∞]. Suppose further that 𝑔 ∶ 𝑋 → [0,∞] is a non-
negative, (ℱ,ℬ(ℝ+

0 ))-measurable, and integrable function on 𝑋 such that

∀𝜇𝑥 ∈ 𝑋 ∶ ∀𝑛 ∈ ℕ∶ 𝑓𝑛(𝑥) ≤ 𝑔(𝑥).

Then the inequality

lim sup
𝑛→∞

∫
𝑋
𝑓𝑛d𝜇 ≤ ∫

𝑋
lim sup
𝑛→∞

𝑓𝑛d𝜇

holds.

Proof. We consider the sequence 𝑔 − 𝑓𝑛. Since ∫𝑋 𝑔d𝜇 = ∫𝑋 |𝑔|d𝜇 < ∞ by
assumption, this sequence is defined 𝜇-almost everywhere. It is also non-
negative by the assumption that 𝑔 dominates the 𝑓𝑛. Therefore we can
apply Fatou’s lemma, Lemma A.31, to this sequence and use the linearity
of Lebesgue integration to find the inequality.

The next result in this section is the Fatou-Lebesgue theorem. It collects
both inequalities of Fatou’s lemma and reverse Fatou’s lemma. Noting that
the middle inequality is trivially true makes remembering the directions of
the first inequality (Fatou’s lemma) and the third inequality (reverse Fatou’s
lemma) easier.

Theorem A.33 (Fatou-Lebesgue theorem). Suppose that (Ω,ℱ, 𝜇) is a
measure space, that 𝑋 ∈ ℱ, and that ⟨𝑓𝑛⟩𝑛∈ℕ is a sequence of (ℱ,ℬ(ℝ+

0 ))-
measurable functions 𝑓𝑛 ∶ 𝑋 → [−∞,∞] that is 𝜇-almost everywhere domi-
nated by an integrable function 𝑔 ∶ 𝑋 → [0,∞], i.e.,

∀𝜇𝑥 ∈ 𝑋 ∶ ∀𝑛 ∈ ℕ∶ |𝑓𝑛(𝑥)| ≤ 𝑔(𝑥).

Then all functions 𝑓𝑛 are integrable as well as the pointwise defined functions
lim inf𝑛→∞ 𝑓𝑛 and lim sup𝑛→∞ 𝑓𝑛, and the inequalities

∫
𝑋
lim inf
𝑛→∞

𝑓𝑛d𝜇 ≤ lim inf
𝑛→∞

∫
𝑋
𝑓𝑛d𝜇 ≤ lim sup

𝑛→∞
∫
𝑋
𝑓𝑛d𝜇 ≤ ∫

𝑋
lim sup
𝑛→∞

𝑓𝑛d𝜇

hold.

Proof. The absolute values of all functions 𝑓𝑛 well as the pointwise defined
functions lim inf𝑛→∞ 𝑓𝑛 and lim sup𝑛→∞ 𝑓𝑛 are dominated by the majorant 𝑔
and are hence integrable, since 𝑔 is integrable by assumption.

Fatou’s lemma, Lemma A.31, can be applied to the functions 𝑓𝑛 + 𝑔,
which yields the first inequality. The third inequality is reverse Fatou’s
lemma, Lemma A.32.
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If we assume that the sequence ⟨𝑓𝑛⟩𝑛∈ℕ is a pointwise non-decreasing
sequence of non-negative functions that converges pointwise to a function 𝑓 ,
then the limit lim𝑛→∞ and Lebesgue integration indeed commute. This is
the Lebesgue monotone convergence theorem.

Theorem A.34 (Lebesgue monotone convergence theorem). Suppose that
(Ω,ℱ, 𝜇) is a measure space, that 𝑋 ∈ ℱ, and that ⟨𝑓𝑛⟩𝑛∈ℕ is a 𝜇-almost ev-
erywhere pointwise non-decreasing sequence of (ℱ,ℬ(ℝ+

0 ))-measurable non-
negative functions 𝑓𝑛 ∶ 𝑋 → [0,∞], i.e.,

∀𝜇𝑥 ∈ 𝑋 ∶ ∀𝑛 ∈ ℕ∶ 0 ≤ 𝑓𝑛(𝑥) ≤ 𝑓𝑛+1(𝑥) ≤ ∞.

Suppose further that the pointwise limits lim𝑛→∞ 𝑓𝑛(𝑥) exist for 𝜇-almost
all 𝑥 ∈ 𝑋 and that the function 𝑓 is 𝜇-almost everywhere equal to this
𝜇-almost everywhere pointwise limit of the sequence ⟨𝑓𝑛⟩𝑛∈ℕ, i.e., 𝑓(𝑥) =
lim𝑛→∞ 𝑓𝑛(𝑥) for 𝜇-almost all 𝑥 ∈ 𝑋. Then the function 𝑓 is (ℱ,ℬ(ℝ+

0 ))-
measurable, and the equality

∫
𝑋
𝑓d𝜇 = ∫

𝑋
lim
𝑛→∞

𝑓𝑛d𝜇 = lim
𝑛→∞

∫
𝑋
𝑓𝑛d𝜇

holds.

If we assume that the sequence ⟨𝑓𝑛⟩𝑛∈ℕ converges pointwise to a function
and that is dominated by a majorant 𝑔, then the limit lim𝑛→∞ and Lebesgue
integration indeed commute. This is the Lebesgue dominated convergence
theorem.

Theorem A.35 (Lebesgue dominated convergence theorem). Suppose that
(Ω,ℱ, 𝜇) is a measure space, that 𝑋 ∈ ℱ, and that ⟨𝑓𝑛⟩𝑛∈ℕ is a sequence
of (ℱ,ℬ(ℝ+

0 ))-measurable functions 𝑓𝑛 ∶ 𝑋 → [−∞,∞] that is 𝜇-almost
everywhere dominated by an integrable function 𝑔 ∶ 𝑋 → [0,∞], i.e.,

∀𝜇𝑥 ∈ 𝑋 ∶ ∀𝑛 ∈ ℕ∶ |𝑓𝑛(𝑥)| ≤ 𝑔(𝑥).

Suppose further that the pointwise limits lim𝑛→∞ 𝑓𝑛(𝑥) exist for 𝜇-almost
all 𝑥 ∈ 𝑋 and that the function 𝑓 is 𝜇-almost everywhere equal to this
𝜇-almost everywhere pointwise limit of the sequence ⟨𝑓𝑛⟩𝑛∈ℕ, i.e., 𝑓(𝑥) =
lim𝑛→∞ 𝑓𝑛(𝑥) for 𝜇-almost all 𝑥 ∈ 𝑋. Then the function 𝑓 is integrable,
and the equality

lim
𝑛→∞

∫
𝑋
|𝑓𝑛 − 𝑓|d𝜇 = 0

holds, which also implies

∫
𝑋
𝑓d𝜇 = ∫

𝑋
lim
𝑛→∞

𝑓𝑛d𝜇 = lim
𝑛→∞

∫
𝑋
𝑓𝑛d𝜇.
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A.6 Probability Spaces and Random Variables
A probability space is a triple (Ω,ℱ, ℙ) consisting of a sample space Ω, an
event space ℱ, and a probability function ℙ. The sample space Ω is the set
of all possible outcomes, where an outcome is the result of a single execution
of the model. The event space ℱ is the set of all events, where an event is
a set of zero or more outcomes, i.e., a subset of the sample space Ω. The
probability function ℙ∶ ℱ → [0, 1] returns the probability of each event; the
probability of the whole sample space Ω must be equal to one.

In the following, formal definitions of a probability space and a random
variable are given.

Definition A.36 (probability measure). A probability measure ℙ is a mea-
sure that assigns value one to the entire (sample) space Ω, i.e., ℙ(Ω) = 1.

Definition A.37 (probability space). A probability space (Ω,ℱ, ℙ) is a
triple consisting of a sample space Ω, an event space ℱ, and a probabil-
ity function ℙ that satisfy the following properties:

1. The sample space Ω is an arbitrary non-empty set.

2. The event space ℱ is a set of subsets (events) of the sample space Ω
and a 𝜎-algebra.

3. The probability function ℙ∶ ℱ → [0, 1] is a probability measure.

If (Ω,ℱ, ℙ) is a probability space, then it is also a measure space and
(Ω,ℱ) is a measurable space by the definition of a probability space.

Random variables are functions on probability spaces which are compat-
ible with measuring probabilities.

Definition A.38 (random variable). Suppose (Ω,ℱ, ℙ) is a probability
space and (Ψ,𝒢) is a measurable space. Then a (Ψ,𝒢)-valued random vari-
able 𝑋 is a measurable function 𝑋∶ Ω → Ψ.

The only difference between a measurable function (with domain (Ω,ℱ))
and a random variable (with domain (Ω,ℱ, ℙ)) is that a random variable
comes with a probability measure.

While the domain of a random variable 𝑋 is the sample space, its
codomain Ψ is called the observation space. The definition of a random
variable 𝑋 means that the probability measure ℙ yields the probabilities of
all preimages 𝑋−1(𝐺) (as long as 𝐺 is in the 𝜎-algebra 𝒢 of the measurable
space that is the codomain or observation space of the random variable 𝑋).
In other words, a random variable𝑋 maps any outcome 𝜔 ∈ Ω to an observed
quantity 𝜓 ∈ Ψ such that the outcomes that lead to an observation 𝐺 ∈ 𝒢 in
the observation space have a probability given by the probability measure ℙ.
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Real valued random variables 𝑋∶ Ω → ℝ are the important special case
where the observation space are the real numbers. We can use the generator
(A.1h) of the Borel 𝜎-algebra ℬ(ℝ) (see Section A.2). Since it suffices to
check measurability on any generator of the Borel 𝜎-algebra and the preim-
ages in Definition A.9 are 𝑋−1((−∞, 𝑎]) = {𝜔 ∈ Ω ∶ 𝑋(𝜔) ≤ 𝑎}, a function
𝑋∶ Ω → ℝ is a (real valued) random variable if {𝜔 ∈ Ω ∶ 𝑋(𝜔) ≤ 𝑎} ∈ ℱ
holds for all 𝑎 ∈ ℝ.

Integrable random variables are Lebesgue integrable functions (see Def-
inition A.18).
Definition A.39 (integrable random variable). A random variable 𝑋 is
called integrable if it is a Lebesgue integrable function, i.e., if

𝔼[|𝑋|] = ∫
Ω
|𝑋|dℙ < ∞.

The definition of an integrable random variable implies that 𝔼[𝑋] exists
and has a finite value as well.

Intuitively, in the one-dimensional case, a real valued random variable𝑋∶ Ω →
ℝ has the probability density function 𝑓𝑋 if

ℙ[𝑎 < 𝑋 ≤ 𝑏] = ∫
𝑏

𝑎
𝑓𝑋(𝑥)d𝑥

holds for all intervals [𝑎, 𝑏] ⊂ ℝ, where 𝑓𝑋 is a non-negative Lebesgue inte-
grable function. The cumulative distribution function of 𝑋 is the function

𝐹𝑋(𝑥) ∶= ℙ[𝑋 ≤ 𝑥] = ∫
𝑥

−∞
𝑓𝑋(𝑡)d𝑡.

Using the cumulative distribution function, we can also write

ℙ[𝑎 < 𝑋 ≤ 𝑏] = 𝐹𝑋(𝑏) − 𝐹𝑋(𝑎) = ∫
𝑏

𝑎
𝑓𝑋(𝑥)d𝑥.

If the probability density function 𝑓𝑋 is continuous at 𝑥, then both
functions are related by

𝑓𝑋(𝑥) = 𝐹 ′
𝑋(𝑥).

If the cumulative distribution function 𝐹𝑋 is left-continuous at 𝑥, the value
of

ℙ[𝑋 = 𝑏] = 𝐹𝑋(𝑏) − lim
𝑥→𝑏−

𝐹𝑋(𝑥)

vanishes, which means that there is no discrete component at 𝑏 (continuous
random variable). If it is not left-continuous, this value is called the discrete
component of the probability distribution at 𝑏 (discrete random variable).

Formally, the probability density function is defined within the measure
theoretic framework as follows.
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Definition A.40 (probability density function (PDF), cumulative distribu-
tion function (CDF)). Suppose that (Ω,ℱ, ℙ) is a probability space, that
(Ψ,𝒢, 𝜈) is a measure space, and that 𝑋∶ Ω → Ψ is a (Ψ,𝒢, 𝜈)-valued ran-
dom variable. The so-called reference measure 𝜈 is the counting measure in
the case that Ψ is finite (discrete random variable) and the Lebesgue mea-
sure in the case that Ψ = ℝ𝑑, 𝑑 ∈ ℕ ((multidimensional) continuous random
variable). Then any measurable function 𝑓𝑋 ∶ Ψ → ℝ+

0 that satisfies

∀𝐺 ∈ 𝒢∶ ℙ[𝑋 ∈ 𝐺] ∶= ℙ(𝐺) ∶= ∫
𝑋−1(𝐺)

dℙ = ∫
𝐺
𝑓𝑋d𝜈

is called a probability density function of the random variable 𝑋. Further-
more, its cumulative distribution function is the function

𝐹𝑋 ∶ Ψ → ℝ+
0 , 𝐹𝑋(𝑥) ∶= ℙ[𝑋 ≤ 𝑥] ∶= ∫

Ψ
J𝑡1 ≤ 𝑥1K⋯ J𝑡𝑛 ≤ 𝑥𝑛K𝑓𝑋(𝑡)d𝜈(𝑡),

where 𝑋 ≤ 𝑥 is understood elementwise whenever the random variable 𝑋 is
vector valued and the ordering ≤ in the integrand is a total ordering on Ψ.

In other words, the probability density function 𝑓𝑋 is the Radon-Nikodym
derivative

𝑓𝑋 = d(𝑋#ℙ)
d𝜈 = d(ℙ ∘ 𝑋−1)

d𝜈
and as such it is almost unique. Here 𝑋#ℙ = ℙ ∘ 𝑋−1 is the push-forward
measure of ℙ.

Next, we define commonly used operators on random variables. If the
random variable is continuous, then the reference measure 𝜈 is the Lebesgue
measure and d𝜈(𝑥) is commonly replaced by d𝑥 to denote the Lebesgue
measure.

Definition A.41 (moment). Suppose 𝑋 is a random variable with proba-
bility density function 𝑓𝑋 as in Definition A.40. Then

𝑀𝑘(𝑋, 𝑐) ∶= ∫
𝑋−1(Ψ)

(𝑥 − 𝑐)𝑘dℙ(𝑥) = ∫
Ψ
(𝑥 − 𝑐)𝑘𝑓𝑋(𝑥)d𝜈(𝑥)

is called the 𝑘-th moment of the random variable 𝑋 about the center 𝑐.

Definition A.42 (mean / expected value / expectance). The expected value
or expectance of a random variable 𝑋 is its first moment about the center
zero, i.e.,

𝔼[𝑋] ∶= 𝑀1(𝑋, 0) ∶= ∫
𝑋−1(Ψ)

𝑥dℙ(𝑥) = ∫
Ψ
𝑥𝑓𝑋(𝑥)d𝜈(𝑥).

117



Appendix A. Measure and Probability Theory

Definition A.43 (variance, standard deviation). The variance of a random
variable 𝑋 is its second moment about the expected value, i.e.,

𝕍[𝑋] ∶= 𝑀2(𝑋,𝔼[𝑋]) = 𝔼[(𝑋 − 𝔼[𝑋])2] = ∫
Ψ
(𝑥 − 𝔼[𝑋])2𝑓𝑋(𝑥)d𝜈(𝑥).

The standard deviation is the square root of the variance, i.e.,

𝜎[𝑋] ∶= √𝕍[𝑋].

The formulae above can also expediently be written using Riemann-
Stieltjes integrals in terms of the probability density function and the cu-
mulative distribution function. The equality

∫𝑔(𝑥)d𝐹𝑋(𝑥) = ∫𝑔(𝑥)𝑓𝑋(𝑥)d𝑥

holds for Riemann-Stieltjes integrals, if the involved functions are smooth
enough such that all integrals exist. For example, we hence have

𝑀𝑘(𝑋, 𝑐) = ∫(𝑥 − 𝑐)𝑘d𝐹𝑋(𝑥),

𝔼[𝑋] = ∫𝑥d𝐹𝑋(𝑥),

𝕍[𝑋] = ∫(𝑥 − 𝔼[𝑋])2d𝐹𝑋(𝑥).

A.7 Inequalities
In this section, important inequalities connected to measure and probability
theory are collected.

A.7.1 Basic Inequalities
Jensen’s inequality is an important inequality, whose measure-theoretic form
is stated in the following theorem.

Definition A.44 (convex set). A set 𝐶 is called convex if

∀(𝑥, 𝑦) ∈ 𝐶2 ∶ ∀𝑦 ∈ 𝐶 ∶ ∀𝛼 ∈ [0, 1] ∶ 𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝐶.

Definition A.45 ((strictly) convex and concave functions). Suppose 𝐶 is
a convex set. A function 𝑓 ∶ 𝐶 → ℝ is called convex if

∀(𝑥, 𝑦) ∈ 𝐶2 ∶ ∀𝛼 ∈ [0, 1] ∶ 𝑓(𝛼𝑥 + (1 − 𝛼)𝑦) ≤ 𝛼𝑓(𝑥) + (1 − 𝛼)𝑓(𝑦).

It is called strictly convex if it satisfies this property with ≤ replaced by <.
It is called (strictly) concave if −𝑓 is (strictly) convex.
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Definition A.46 (subderivative). A subderivative of a convex function
𝑓 ∶ 𝐼 → ℝ at a point 𝑥0 ∈ 𝐼 in the open interval 𝐼 is a real number 𝑐 ∈ ℝ
such that

∀𝑥 ∈ 𝐼 ∶ 𝑓(𝑥) − 𝑓(𝑥0) ≥ 𝑐(𝑥 − 𝑥0).

Lemma A.47 (subderivatives). Suppose 𝑓 ∶ 𝐼 → ℝ is a convex function on
an open interval 𝐼. Then the set of subderivatives at a point 𝑥0 ∈ 𝐼 is the
non-empty closed interval

[ lim
𝑥→𝑥0−

𝑓(𝑥) − 𝑓(𝑥0)
𝑥 − 𝑥0

, lim
𝑥→𝑥0+

𝑓(𝑥) − 𝑓(𝑥0)
𝑥 − 𝑥0

] .

Theorem A.48 (Jensen’s inequality). Suppose that (Ω,ℱ, 𝜇) is a measure
space, that 𝐼 ⊂ ℝ is an interval, that the function 𝑔 ∶ Ω → 𝐼 is Lebesgue
integrable with respect to 𝜇, and that the function 𝜙∶ 𝐼 → ℝ is convex on
the interval 𝐼. Then the inequality

𝜙( 1
𝜇(Ω) ∫Ω

𝑔d𝜇) ≤ 1
𝜇(Ω) ∫Ω

𝜙 ∘ 𝑔d𝜇

holds. If the function 𝜙 is concave, the inequality is reversed.

If the space is a probability space (Ω,ℱ, ℙ), the inequality is commonly
written as

𝜙(𝔼[𝑋]) ≤ 𝔼[𝜙(𝑋)].

Proof. We start by defining the point

𝑥0 ∶= 1
𝜇(Ω) ∫Ω

𝑔d𝜇 ∈ 𝐼.

Next, by the convexity of 𝜙 and by Lemma A.47, there exists a 𝑐 ∈ ℝ for
the point 𝑥0 ∈ 𝐼 such that

∀𝑥 ∈ 𝐼 ∶ 𝜙(𝑥) − 𝜙(𝑥0) ≥ 𝑐(𝑥 − 𝑥0).

Since this inequality holds for all 𝑥 ∈ 𝐼 , it also holds for all 𝑥 = 𝑔(𝜔) ∈ 𝐼 ,
i.e.,

∀𝜔 ∈ Ω∶ 𝜙(𝑔(𝜔)) ≥ 𝜙(𝑥0) + 𝑐(𝑔(𝜔) − 𝑥0).
Using the monotony of the integral, integration of both sides yields

∫
Ω
𝜙 ∘ 𝑔d𝜇 ≥ 𝜇(Ω)𝜙(𝑥0) + 𝑐(∫

Ω
𝑔d𝜇 − 𝜇(Ω)𝑥0) = 𝜇(Ω)𝜙(𝑥0).

If the function 𝜙 is concave, the analogous argument shows the reversed
inequality, which concludes the proof.
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A.7.2 Concentration Inequalities
Concentration inequalities provide probability bounds on how much a ran-
dom variable deviates from its expected value.

Markov’s and Chebyshev’s Inequalities

Theorem A.49 (Markov’s inequality). Suppose 𝑋 is a non-negative random
variable and 𝑎 ∈ ℝ+. Then the inequality

ℙ[𝑋 ≥ 𝑎] ≤ 𝔼[𝑋]
𝑎

holds.

Proof. Since 𝑋 is non-negative random variable, its expected value can be
written as

𝔼[𝑋] = ∫
∞

0
𝑥𝑓𝑋(𝑥)d𝑥.

By splitting the interval at 𝑎 ∈ ℝ+, we can estimate

𝔼[𝑋] = ∫
𝑎

0
𝑥𝑓𝑋(𝑥)d𝑥 +∫

∞

𝑎
𝑥𝑓𝑋(𝑥)d𝑥

≥ ∫
∞

𝑎
𝑥𝑓𝑋(𝑥)d𝑥 ≥ 𝑎∫

∞

𝑎
𝑓𝑋(𝑥)d𝑥 = 𝑎ℙ[𝑋 ≥ 𝑎],

which concludes the proof.

Theorem A.50 (Chebyshev’s inequality). Suppose 𝑋 is an integrable ran-
dom variable with expected value 𝜇 ∶= 𝔼[𝑥] and finite, non-zero variance
𝜎2 ∶= 𝕍[𝑋] ∈ (0,∞). Then the inequality

∀𝑘 ∈ ℝ+ ∶ ℙ[|𝑋 − 𝜇| ≥ 𝑘𝜎] ≤ 1
𝑘2

holds.

Proof. The inequality can be shown by applying Markov’s inequality to the
random variable (𝑋−𝜇)2 and the constant 𝑎 ∶= (𝑘𝜎)2 in Markov’s inequality.

Hoeffding’s Inequality

In [30], variants of Hoeffding’s inequality were shown. We start by proving
Hoeffding’s lemma before stating Hoeffding’s inequalities and discussing how
they can be applied.
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Lemma A.51 (Hoeffding’s lemma). Suppose that 𝑋 is a real valued random
variable such that

∃(𝑎, 𝑏) ∈ ℝ2 ∶ ℙ[𝑎 ≤ 𝑋 ≤ 𝑏] = 1.

Then the inequality

∀𝜆 ∈ ℝ∶ 𝔼[e𝜆(𝑋−𝔼[𝑋])] ≤ e𝜆
2(𝑏−𝑎)2/8

holds.

Proof. If 𝑎 = 𝑏, then the inequality simply becomes 𝔼[1] ≤ 𝔼[1].
Otherwise, if 𝑎 < 𝑏, since the function 𝑥 ↦ e𝜆(𝑥−𝔼[𝑋]) is convex, the

inequality

∀𝑥 ∈ [𝑎, 𝑏] ∶ e𝜆(𝑥−𝔼[𝑋]) ≤ 𝑏 − 𝑥
𝑏 − 𝑎e

𝜆(𝑎−𝔼[𝑋]) + 𝑥 − 𝑎
𝑏 − 𝑎 e

𝜆(𝑏−𝔼[𝑋])

holds. Applying the expected value to both sides yields

𝔼[e𝜆(𝑋−𝔼[𝑋])] ≤ 𝑏 − 𝔼[𝑋]
𝑏 − 𝑎 e𝜆(𝑎−𝔼[𝑋]) + 𝔼[𝑋] − 𝑎

𝑏 − 𝑎 e𝜆(𝑏−𝔼[𝑋])

= (1 − 𝛼)e𝜆(𝑎−𝔼[𝑋]) + 𝛼e𝜆(𝑏−𝔼[𝑋]),

where
𝛼 ∶= 𝔼[𝑋] − 𝑎

𝑏 − 𝑎 .

Using 𝑦 ∶= 𝜆(𝑏 − 𝑎), we have

𝔼[e𝜆(𝑋−𝔼[𝑋])] ≤ (1 − 𝛼 + 𝛼e𝜆(𝑏−𝑎))e𝜆(𝑎−𝔼[𝑋])

= (1 − 𝛼 + 𝛼e𝜆(𝑏−𝑎))e−𝛼𝜆(𝑏−𝑎)

= (1 − 𝛼 + 𝛼e𝑦)e−𝛼𝑦.

Defining the function

𝑓 ∶ ℝ → ℝ, 𝑦 ↦ ln(1 − 𝛼 + 𝛼e𝑦) − 𝛼𝑦,

the inequality becomes

𝔼[e𝜆(𝑋−𝔼[𝑋])] ≤ e𝑓(𝑦).

The function 𝑓 is well-defined, since

1 − 𝛼 + 𝛼e𝑦 = 𝛼( 1
𝛼 − 1 + e𝑦) = 𝛼(𝑏 − 𝔼[𝑋]

𝔼[𝑋] − 𝑎 + e𝑦) > 0

because of 𝑎 ≤ 𝔼[𝑋] ≤ 𝑏 by the assumption ℙ[𝑎 ≤ 𝑋 ≤ 𝑏] = 1.
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It remains to find an upper bound for 𝑓 . Since 𝑓 is sufficiently smooth,
Taylor’s theorem yields

∀𝑦 ∈ ℝ∶ ∃𝑧 ∈ [0, 𝑦] ∶ 𝑓(𝑦) = 𝑓(0) + 𝑓 ′(0)𝑦 + 𝑓″(𝑧)
2 𝑦2.

Because of

𝑓 ′(𝑦) = 𝛼e𝑦

1 − 𝛼 + 𝛼e𝑦 − 𝛼,

𝑓″(𝑦) = 𝛼e𝑦

1 − 𝛼 + 𝛼e𝑦 (1 − 𝛼e𝑦

1 − 𝛼 + 𝛼e𝑦) = 𝑢(1 − 𝑢), 𝑢 ∶= 𝛼e𝑦

1 − 𝛼 + 𝛼e𝑦 ,

we have 𝑓(0) = 0, 𝑓 ′(0) = 0, and 𝑓″(𝑧) ≤ 1/4 due to 𝑢(1 − 𝑢) ≤ 1/4 for all
𝑢 ∈ ℝ. Therefore the estimate

𝑓(𝑦) ≤ 𝑦2
8 = 𝜆2(𝑏 − 𝑎)2

8
holds, which completes the proof.

Theorem A.52 (Hoeffding’s inequality). Suppose that {𝑋𝑖}𝑛𝑖=1 are inde-
pendent real valued random variables, each being bounded such that

∀𝑖 ∈ [1∶𝑛] ∶ ∃(𝑎𝑖, 𝑏𝑖) ∈ ℝ2 ∶ ℙ[𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖] = 1.

Then the inequalities

ℙ[𝑋 − 𝔼[𝑋] ≥ 𝑡] ≤ exp(− 2𝑛2𝑡2
∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2
),

ℙ[|𝑋 − 𝔼[𝑋]| ≥ 𝑡] ≤ 2 exp(− 2𝑛2𝑡2
∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2
),

𝑋 ∶= 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖

hold for all 𝑡 ∈ ℝ+.

These inequalities also hold when the random variables {𝑋𝑖}𝑛𝑖=1 are ob-
tained by sampling without replacement [30]. Better bounds for this case
can be found in [31].

Proof. We first define

𝑆 ∶=
𝑛
∑
𝑖=1

𝑋𝑖.
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Using an arbitrary parameter 𝜆 ∈ ℝ+ and Markov’s inequality, Theorem A.49,
we find

ℙ[𝑋 − 𝔼[𝑋] ≥ 𝑡] = ℙ[𝑆 − 𝔼[𝑆] ≥ 𝑛𝑡] = ℙ[e𝜆(𝑆−𝔼[𝑆]) ≥ e𝜆𝑛𝑡] ≤ 𝔼[e𝜆(𝑆−𝔼[𝑆])]
e𝜆𝑛𝑡

.

Since the random variables 𝑋𝑖 are independent, the inequality

ℙ[𝑋 − 𝔼[𝑋] ≥ 𝑡] ≤ e−𝜆𝑛𝑡
𝑛
∏
𝑖=1

𝔼[e𝜆(𝑋𝑖−𝔼[𝑋𝑖])] (A.5)

holds. Using Hoeffding’s lemma, Lemma A.51, we can estimate the right-
hand side to obtain

ℙ[𝑋 − 𝔼[𝑋] ≥ 𝑡] ≤ e−𝜆𝑛𝑡
𝑛
∏
𝑖=1

e𝜆
2(𝑏𝑖−𝑎𝑖)2/8 = exp(−𝜆𝑛𝑡 + 𝜆2

8
𝑛
∑
𝑖=1

(𝑏𝑖 − 𝑎𝑖)2).

We can now use the parameter 𝜆 ∈ ℝ+ to find the best possible up-
per bound. Because the right-hand side is a quadratic function of 𝜆, it is
straightforward to calculate that it achieves its global minimum at

𝜆 ∶= 4𝑛𝑡
∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2
> 0,

which is positive since 𝑡 > 0. This value for 𝜆 yields

ℙ[𝑋 − 𝔼[𝑋] ≥ 𝑡] ≤ exp(− 2𝑛2𝑡2
∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2
),

which proves the first inequality.
The see the second one, we calculate

ℙ[|𝑋 − 𝔼[𝑋]| ≥ 𝑡] = ℙ[𝑋 − 𝔼[𝑋] ≥ 𝑡] + ℙ[𝑋 − 𝔼[𝑋] ≤ −𝑡]
= ℙ[𝑋 − 𝔼[𝑋] ≥ 𝑡] + ℙ[−𝑋 + 𝔼[𝑋] ≥ 𝑡].

The first term is bounded by the first inequality. The second term is also
bounded by the first inequality, but now applied to the random variables
𝑌𝑖 ∶= −𝑋𝑖 and noting that the assumption ℙ[−𝑏𝑖 ≤ 𝑌𝑖 ≤ −𝑎𝑖] = 1 also
results in the sum ∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2, which concludes the proof.

Corollary A.53 (Hoeffding’s inequality for sums). Suppose the assumptions
of Theorem A.52 hold. Then the inequalities

ℙ[𝑆 − 𝔼[𝑆] ≥ 𝑡] ≤ exp(− 2𝑡2
∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2
),
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ℙ[|𝑆 − 𝔼[𝑆]| ≥ 𝑡] ≤ 2 exp(− 2𝑡2
∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2
),

𝑆 ∶=
𝑛
∑
𝑖=1

𝑋𝑖,

hold for all 𝑡 ∈ ℝ+.
Proof. Theorem A.52 can be applied to

ℙ[𝑆 − 𝔼[𝑆] ≥ 𝑡] = ℙ[𝑛𝑋 − 𝑛𝔼[𝑋] ≥ 𝑡] = ℙ[𝑋 − 𝔼[𝑋] ≥ 𝑡/𝑛]

since 𝑡/𝑛 ∈ ℝ+.

Corollary A.54 (Hoeffding’s inequality for confidence intervals). Suppose
the assumptions of Theorem A.52 hold. Then the inequalities

ℙ⎡⎢
⎣
𝔼[𝑋] > 𝑋 −√− ln(𝛿)∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2
2𝑛2

⎤⎥
⎦
≥ 1 − 𝛿, (A.6a)

ℙ⎡⎢
⎣
|𝔼[𝑋] − 𝑋| < √− ln(𝛿)∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2
2𝑛2

⎤⎥
⎦
≥ 1 − 2𝛿 (A.6b)

hold for all 𝛿 ∈ (0, 1).
The first inequality is often formulated as follows: with probability at

least 1 − 𝛿, the inequality

𝔼[𝑋] > 𝑋 −√− ln(𝛿)∑𝑛
𝑖=1(𝑏𝑖 − 𝑎𝑖)2
2𝑛2

holds. The second inequality is equivalent to saying that the inequality

|𝔼[𝑋] − 𝑋| < √− ln(𝛿)∑𝑛
𝑖=1(𝑏𝑖 − 𝑎𝑖)2
2𝑛2

holds with probability at least 1 − 2𝛿.

Proof. We start from the function

𝛿 ∶ ℝ+ → (0, 1), 𝛿(𝑡) ∶= exp(− 2𝑛2𝑡2
∑𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2
) (A.7)

and its inverse

𝑡 ∶ (0, 1) → ℝ+, 𝑡(𝛿) ∶= √− ln(𝛿)∑𝑛
𝑖=1(𝑏𝑖 − 𝑎𝑖)2
2𝑛2 (A.8)
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and note that 𝛿 is a (monotone decreasing) bĳection between 𝑡 ∈ ℝ+ and
𝛿 ∈ (0, 1).

Using these definitions, the first inequality in Theorem A.52, where 𝑡 ∈
ℝ+ is assumed, becomes

ℙ[𝑋 − 𝔼[𝑋] ≥ 𝑡] ≤ 𝛿(𝑡),

which is equivalent to

ℙ[𝔼[𝑋] > 𝑋 − 𝑡] ≥ 1 − 𝛿(𝑡)

after negation. This is the first inequality.
The second inequality in Theorem A.52 becomes

ℙ[|𝑋 − 𝔼[𝑋]| ≥ 𝑡] ≤ 2𝛿(𝑡),

whose negation leads to

ℙ[|𝔼[𝑋] − 𝑋| < 𝑡] ≥ 1 − 2𝛿(𝑡).

This is the second inequality, which completes the proof.

This corollary shows how Hoeffding’s inequality is used to calculate one-
sided and two-sided confidence intervals. We are interested in the (true) ex-
pected value 𝔼[𝑋], but we can only empirically calculate the sample mean𝑋.
In accordance with the assumptions of Theorem A.52, we assume that the
random variables are independent or that sampling is performed without
replacement (by the comment below the theorem). Then (A.6a) yields the
one-sided confidence interval

(𝑋 − 𝑡(𝛿),∞)

at confidence level 1 − 𝛿 (usually close to one) for the true value 𝔼[𝑋].
Similarly, (A.6b) yields the (symmetric) two-sided confidence interval

(𝑋 − 𝑡(𝛿),𝑋 + 𝑡(𝛿))

at the confidence level 1 − 2𝛿 for the true value 𝔼[𝑋].
So far we have considered the number 𝑛 of random variables (and their

bounds 𝑎𝑖 and 𝑏𝑖) to be fixed. If we view them as variable, another way to
interpret the inequalities in Corollary A.54 is to ask the question how many
samples should be obtained in order to acquire a confidence interval of given
size 𝑡0 (smaller 𝑡0 is better) and of given confidence level 1−𝛿0 (larger 1−𝛿0
is better, i.e., smaller 𝛿0 is better).

To shorten the notation, we define

𝑚 ∶= 2𝑛2

∑𝑛
𝑖=1(𝑏𝑖 − 𝑎𝑖)2
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and note that in the important special case that all 𝑎𝑖 are equal to a constant
𝑎 ∈ ℝ and all 𝑏𝑖 are equal to a constant 𝑏 ∈ ℝ, we have

𝑚 = 2𝑛2

𝑛(𝑏 − 𝑎)2 = 2𝑛
(𝑏 − 𝑎)2 ,

meaning that 𝑚 grows just as the number 𝑛 of sampled random variables
increases.

To acquire a given one-sided confidence interval of given size 𝑡0 ∈ ℝ+

and of given confidence level 1 − 𝛿0 with 𝛿0 ∈ (0, 1), we first write 𝛿(𝑡,𝑚)
and 𝑡(𝛿,𝑚) for the two functions defined in (A.7) and (A.8) to underline
their dependence on 𝑚. In the first case, we are given the confidence level
1 − 𝛿0 and would like to find values of 𝑚 that also satisfy a given size 𝑡0,
i.e., we seek 𝑚 such that

𝑡(𝛿0,𝑚) ≤ 𝑡0,
which is equivalent to

𝑚 ≥ − ln 𝛿0
𝑡20

> 0.

In the second case, we are given a confidence interval size 𝑡0 and would like
to find values of 𝑚 that also satisfy a given confidence level 1 − 𝛿0, i.e., we
seek 𝑚 such that

𝛿(𝑡0,𝑚) ≤ 𝛿0,
which is equivalent to

𝑚 ≥ − ln 𝛿0
𝑡20

> 0.

In both cases we arrive at the same condition for 𝑚, and thus define

𝑚∶ (0, 1) × ℝ+ → ℝ+, 𝑚(𝛿, 𝑡) ∶= − ln 𝛿
𝑡2 .

This condition for 𝑚 can interpreted in terms of the number 𝑛 of samples
needed. If the size 𝑡0 of the confidence interval is to be reduced by a factor 𝜆
(while the confidence level 1−𝛿0 is kept constant), 𝑚 and hence the number 𝑛
of samples scales quadratically since

𝑚(𝛿0, 𝜆𝑡0)
𝑚(𝛿0, 𝑡0)

= 1
𝜆2 .

The quadratic scaling is consistent with the law of large numbers and the
central limit theorem (see Section A.11).

Similarly, if 𝛿0 is to be reduced by a factor 𝜆 (while the size 𝑡0 is kept
constant), 𝑚 and hence the number 𝑛 of samples scales as

𝑚(𝜆𝛿0, 𝑡0)
𝑚(𝛿0, 𝑡0)

= 1 + ln𝜆
ln 𝛿0

.
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Bernstein’s Inequality
Bernstein-type inequalities date back to the 1920s and 1930s and are the
oldest inequalities that give bounds on the probability how much a sum
of random variables deviates from its mean. While Hoeffding’s inequality,
which serves the same purpose, only supposes that the random variables
are bounded, Bernstein inequalities also use the variance of the distribution
to get tighter bounds. A typical inequality of the Bernstein type is the
following one.

Theorem A.55 (Bernstein’s inequality). Suppose {𝑋𝑖}𝑛𝑖=1 are independent
random variables such that

∀𝑖 ∈ [1∶𝑛] ∶ 𝔼[𝑋𝑖] = 0

and
∃𝑀 ∈ ℝ+ ∶ ∀𝑖 ∈ [1∶𝑛] ∶ ℙ[|𝑋𝑖| ≤ 𝑀] = 1.

Then the inequality

ℙ[𝑋 ≥ 𝑡] ≤ exp(− 𝑛𝑡2
2(𝑀𝑡/3 + 𝑛𝜎2)) ,

𝑋 ∶= 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖,

𝜎2 ∶= 𝕍[𝑋] = 1
𝑛2

𝑛
∑
𝑖=1

𝕍[𝑋𝑖] =
1
𝑛2

𝑛
∑
𝑖=1

𝔼[𝑋2
𝑖 ],

holds for all 𝑡 ∈ ℝ+.

Proof. Since the assumptions of Hoeffding’s inequality, Theorem A.52, are
satisfied, we will be able to use (A.5), which contains the terms 𝔼[e𝜆𝑋𝑖 ], to
show the proposed inequality.

Before we do so, we estimate the terms 𝔼[e𝜆𝑋𝑖 ]. We start by using
the Taylor expansion of the exponential function and the assumption that
𝔼[𝑋𝑖] = 0 for all 𝑖 ∈ [1∶𝑛] to find

∀𝜆 ∈ ℝ∶ 𝔼[e𝜆𝑋𝑖 ] = 1 +
∞
∑
𝑘=2

𝜆𝑘𝔼[𝑋𝑘
𝑖 ]

𝑘!

for all random variables indexed by 𝑖 ∈ [1∶𝑛]. We define the infinite sum

𝑓 ∶ ℝ → ℝ, 𝜆 ↦
∞
∑
𝑘=2

𝜆𝑘−2𝔼[𝑋𝑘
𝑖 ]

𝜎2
𝑖 𝑘!

, 𝜎2
𝑖 ∶= 𝕍[𝑋𝑖] = 𝔼[𝑋2

𝑖 ]

and note that it converges for all 𝜆 ∈ ℝ, which can easily be seen by the
ratio test.
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Using the infinite sum 𝑓 , we can write

∀𝜆 ∈ ℝ∶ 𝔼[e𝜆𝑋𝑖 ] = 1 + 𝜆2𝜎2
𝑖 𝑓(𝜆).

We now use the inequality 1+ 𝑥 ≤ e𝑥 for all 𝑥 ∈ ℝ, which can be proved by
using the starting point 𝑥 = 0 (for both intervals [0,∞) and (−∞, 0]) and
showing the differentiated inequality. By integration, the inequality follows
from the differentiated one. This inequality yields

∀𝜆 ∈ ℝ∶ 𝔼[e𝜆𝑋𝑖 ] ≤ e𝜆
2𝜎2

𝑖 𝑓(𝜆). (A.9)
Next, we consider the terms 𝔼[𝑋𝑘

𝑖 ] in the infinite sum 𝑓 . The Cauchy-
Schwarz inequality yields

𝔼[𝑋𝑘
𝑖 ] = ∫𝑥𝑖𝑥𝑘−1

𝑖 dℙ(𝑥𝑖) ≤ (∫ |𝑥𝑖|2dℙ(𝑥𝑖))
1/2

(∫|𝑥𝑘−1
𝑖 |2dℙ(𝑥𝑖))

1/2

= 𝜎𝑖 (∫|𝑥𝑖|2𝑘−2dℙ(𝑥𝑖))
1/2

.

We continue to apply the Cauchy-Schwarz inequality to the last factor re-
cursively. Each application of the Cauchy-Schwarz inequality has the form

∫𝑥𝛼
𝑖 dℙ(𝑥𝑖) = ∫𝑥𝑖𝑥𝛼−1

𝑖 dℙ(𝑥𝑖) ≤ (∫ |𝑥𝑖|2dℙ(𝑥𝑖))
1/2

(∫|𝑥𝛼−1
𝑖 |2dℙ(𝑥𝑖))

1/2

= 𝜎𝑖 (∫|𝑥𝑖|2(𝛼−1)dℙ(𝑥𝑖))
1/2

.

Therefore the exponents of |𝑥𝑖| satisfy the recursion
𝑎1 ∶= 2𝑘 − 2, 𝑎𝑚+1 = 2(𝑎𝑚 − 1).

It is straightforward to show by induction that
𝑎𝑚 = 2𝑚𝑘 − 2𝑚+1 + 2.

In summary, continuing to apply the Cauchy-Schwarz inequality recursively
𝑚 times in total, each time splitting off a term |𝑥𝑖| in the last factor, results
in

∀𝑚 ∈ ℕ∶ 𝔼[𝑋𝑘
𝑖 ] ≤ 𝜎1+1/2+⋯+(1/2)𝑚−1

𝑖 (∫|𝑥𝑖|2
𝑚𝑘−2𝑚+1+2dℙ(𝑥𝑖))

1/2𝑚

= 𝜎2(1−1/2𝑚)
𝑖 (∫|𝑥𝑖|2

𝑚𝑘−2𝑚+1+2dℙ(𝑥𝑖))
1/2𝑚

.

By assumption, the absolute values of the random variables 𝑋𝑖 are
bounded by the constant 𝑀 with probability one. Therefore the last factor
can be bounded by

(∫|𝑥𝑖|2
𝑚𝑘−2𝑚+1+2dℙ(𝑥𝑖))

1/2𝑚

≤ (𝑀2𝑚𝑘−2𝑚+1+2)1/2𝑚 ,
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which leads to
𝔼[𝑋𝑘

𝑖 ] ≤ 𝜎2(1−1/2𝑚)
𝑖 𝑀𝑘−2+1/2𝑚−1 .

Taking the limit 𝑚 → ∞ yields

𝔼[𝑋𝑘
𝑖 ] ≤ lim

𝑚→∞
𝜎2(1−1/2𝑚)
𝑖 (𝑀𝑘−2+1/2𝑚−1) = 𝜎2

𝑖𝑀𝑘−2.

Therefore, the infinite sum can be bounded above by

∀𝜆 ∈ ℝ+
0 ∶ 𝑓(𝜆) =

∞
∑
𝑘=2

𝜆𝑘−2𝔼[𝑋𝑘
𝑖 ]

𝜎2
𝑖 𝑘!

≤
∞
∑
𝑘=2

𝜆𝑘−2𝜎2
𝑖𝑀𝑘−2

𝜎2
𝑖 𝑘!

= 1
𝜆2𝑀2

∞
∑
𝑘=2

𝜆𝑘𝑀𝑘

𝑘!

= 1
𝜆2𝑀2 (e

𝜆𝑀 − 1 − 𝜆𝑀)

if the parameter 𝜆 is non-negative. Applying this estimate to (A.9) yields

∀𝜆 ∈ ℝ+
0 ∶ 𝔼[e𝜆𝑋𝑖 ] ≤ exp(𝜆2𝜎2

𝑖
1

𝜆2𝑀2 (e
𝜆𝑀 − 1 − 𝜆𝑀)) .

Next, we use inequality (A.5) as alluded to in the beginning and the
assumptions on the random variables 𝑋𝑖 (that imply ∑𝑛

𝑖=1 𝜎2
𝑖 = 𝑛2𝜎2) to

find

∀𝜆 ∈ ℝ+
0 ∶ ∀𝑡 ∈ ℝ+ ∶ ℙ[𝑋 ≥ 𝑡] ≤ e−𝜆𝑛𝑡

𝑛
∏
𝑖=1

exp(𝜆2𝜎2
𝑖

1
𝜆2𝑀2 (e

𝜆𝑀 − 1 − 𝜆𝑀))

= exp(−𝜆𝑛𝑡 + 𝑛2𝜎2

𝑀2 (e𝜆𝑀 − 1 − 𝜆𝑀)) .

As in the proof of Hoeffding’s inequality, we now minimize the right-
hand side with respect to the unknown parameter 𝜆 ∈ ℝ+

0 to find the best
(i.e., smallest) upper bound. The first derivative of the right-hand side 𝑟 is

𝑟′(𝜆) = (−𝑛𝑡 + 𝑛2𝜎2

𝑀 e𝜆𝑀 − 𝑛2𝜎2

𝑀 ) exp(−𝜆𝑛𝑡 + 𝑛2𝜎2

𝑀2 (e𝜆𝑀 − 1 − 𝜆𝑀)) ,

which vanishes only for

𝜆min ∶= 1
𝑀 ln( 𝑡𝑀

𝑛𝜎2 + 1) ∈ ℝ+.

The second derivative 𝑟″(𝜆min) > 0 is positive at this point. Furthermore,
𝑟′(0) < 0 and lim𝜆→∞ 𝑟(𝜆) = ∞. Therefore 𝜆min is the global minimum.

With the abbreviation

𝑔 ∶ ℝ+ → ℝ, 𝑔(𝑥) ∶= (1 + 𝑥) ln(1 + 𝑥) − 𝑥,

we have
∀𝑡 ∈ ℝ+ ∶ ℙ[𝑋 ≥ 𝑡] ≤ exp(−𝑛2𝜎2

𝑀2 𝑔 ( 𝑡𝑀
𝑛𝜎2)) , (A.10)
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which is also called Bennett’s inequality.
In the next step, 𝑔 is bounded below by

ℎ∶ ℝ+ → ℝ, ℎ(𝑥) ∶= 3
2

𝑥2

𝑥 + 3,

i.e., we have
∀𝑥 ∈ ℝ+ ∶ ℎ(𝑥) ≤ 𝑔(𝑥).

This inequality is shown by differentiating both sides twice and checking the
starting point 𝑥 = 0. More precisely, in other words, we have 𝑔(0) = 0 =
ℎ(0), 𝑔′(0) = 0 = ℎ′(0), and

∀𝑥 ∈ ℝ+ ∶ ℎ″(𝑥) = 27
(𝑥 + 3)3 ≤ 1

𝑥 + 1 = 𝑔″(𝑥),

which implies the inequality by integrating twice.
Applying this last inequality to (A.10) yields

∀𝑡 ∈ ℝ+ ∶ ℙ[𝑋 ≥ 𝑡] ≤ exp(−𝑛2𝜎2

𝑀2 ℎ( 𝑡𝑀
𝑛𝜎2)) = exp( −𝑛𝑡2

2(𝑀𝑡/3 + 𝑛𝜎2)) ,

which concludes the proof.

The last part of the proof, going from (A.10) to the final inequality,
serves two purposes. First, it serves a cosmetic purpose, as the structure
of the final inequality is much simpler than the one of (A.10). Second, and
closely related to the cosmetic appeal, the scaling as the number 𝑛 of random
variables is increased and the influences of the bound 𝑀 and the variance 𝜎2

can be discussed more easily in the final inequality.
On the other hand, the final inequality is less strict than (A.10). There-

fore is better suited to obtain numerical bounds of the mean value 𝑋.

Empirical Bernstein’s Inequality

Anderson Inequality

A.8 Characteristic Functions
Definition A.56 (characteristic function). The characteristic function 𝜙𝑋
of a random variable 𝑋 is the expected value of ei𝑡𝑋, i.e.,

𝜙𝑋 ∶ ℝ → ℂ, 𝜙𝑋(𝑡) ∶= 𝔼[ei𝑡𝑋] = ∫
ℝ
ei𝑡𝑥d𝐹𝑋(𝑥) = ∫

ℝ
ei𝑡𝑥𝑓𝑋(𝑥)d𝑥,

where 𝑓𝑋 is the probability density function of 𝑋 and 𝐹𝑋 its cumulative
distribution function.
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If the random variable has a probability density function 𝑓𝑋, then the
characteristic function is its (inverse) Fourier transform up to a constant in
the complex exponential.

If {𝑋𝑖}𝑖∈ℕ is a set of independent random variables and 𝑎𝑖 ∈ ℝ are
constants, then the characteristic function 𝜙𝑆𝑛

of the linear combination

𝑆𝑛 ∶=
𝑛
∑
𝑖=1

𝑎𝑖𝑋𝑖

is given by
𝜙𝑆𝑛

(𝑡) =
𝑛
∏
𝑖=1

𝜙𝑋𝑖
(𝑎𝑖𝑡).

The characteristic function of the Delta distribution 𝛿𝑎 is
𝜙𝛿𝑎(𝑡) = ei𝑡𝑎.

The characteristic function of the normal distribution 𝑁(𝜇, 𝜎2) is

𝜙𝑁(𝜇,𝜎2)(𝑡) = exp(i𝑡𝜇 − 𝜎2𝑡2
2 ) .

The equality
𝜙(𝑘)
𝑋 (0) = i𝑘𝔼[𝑋𝑘] (A.11)

is useful since it relates the derivatives of the characteristic function at zero
to the moments.

A.9 Types of Convergence
In order to define almost sure convergence, the limit supremum of a sequence
of sets is needed.
Definition A.57 (limit infimum and limit supremum of a sequence of real
numbers). The limit infimum and the limit supremum of a sequence ⟨𝑥𝑛⟩𝑛∈ℕ
of real numbers is defined as

lim inf
𝑛→∞

∶= lim
𝑛→∞

inf
𝑖≥𝑛

𝑥𝑖,

lim sup
𝑛→∞

∶= lim
𝑛→∞

sup
𝑖≥𝑛

𝑥𝑖.

Lemma A.58. Suppose ⟨𝑥𝑛⟩𝑛∈ℕ is a sequence of real numbers. Then the
equalities

lim inf
𝑛→∞

𝑥𝑛 = sup
𝑛∈ℕ

inf
𝑖≥𝑛

𝑥𝑖,

lim sup
𝑛→∞

𝑥𝑛 = inf
𝑛∈ℕ

sup
𝑖≥𝑛

𝑥𝑖

hold.
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Definition A.59 (limit infimum, limit supremum, and limit of a sequence
of sets). Suppose that Ω is a set and that ⟨𝐴𝑛⟩𝑛∈ℕ is a sequence of subsets
𝐴𝑛 ⊂ Ω. Then the limit infimum and the limit supremum of the sequence
⟨𝐴𝑛⟩𝑛∈ℕ are defined as

lim inf
𝑛→∞

𝐴𝑛 ∶= ⋃
𝑛∈ℕ

⋂
𝑖≥𝑛

𝐴𝑖,

lim sup
𝑛→∞

𝐴𝑛 ∶= ⋂
𝑛∈ℕ

⋃
𝑖≥𝑛

𝐴𝑖.

If the limit infimum and the limit supremum two sets are equal, the limit of
the sequence ⟨𝐴𝑛⟩𝑛∈ℕ exists and is written as

lim
𝑛→∞

𝐴𝑛 ∶= lim inf
𝑛→∞

𝐴𝑛 = lim sup
𝑛→∞

𝐴𝑛.

The following lemma shows how the limit infimum and the limit supre-
mum of a sequence of sets can be written in terms of the limit infimum and
the limit supremum of a sequence of real numbers and the indicator function
𝑥 ↦ J𝑥 ∈ 𝐴𝑛K (see Definition A.2) that indicates whether 𝑥 is an element
of 𝐴𝑛.
Lemma A.60. Suppose that Ω is a set and that ⟨𝐴𝑛⟩𝑛∈ℕ is a sequence of
subsets 𝐴𝑛 ⊂ Ω. Then the limit infimum and the limit supremum of the
sequence ⟨𝐴𝑛⟩𝑛∈ℕ are equal to

lim inf
𝑛→∞

𝐴𝑛 = {𝑥 ∈ Ω ∶ lim inf
𝑛→∞

J𝑥 ∈ 𝐴𝑛K = 1},
lim sup
𝑛→∞

𝐴𝑛 = {𝑥 ∈ Ω ∶ lim sup
𝑛→∞

J𝑥 ∈ 𝐴𝑛K = 1}.

In other words, 𝑥 ∈ lim inf𝑛→∞𝐴𝑛 if and only if 𝑥 is an element of all
but finitely many sets 𝐴𝑛. Analogously, 𝑥 ∈ lim sup𝑛→∞𝐴𝑛 if and only if 𝑥
is an element of infinitely many sets 𝐴𝑛.
Definition A.61 (almost sure convergence, convergence with probability
one). A sequence ⟨𝑋𝑛⟩𝑛∈ℕ of random variables converges almost surely (or
converges with probability one) to a random variable 𝑋 if

∀𝜖 ∈ ℝ+ ∶ ℙ[lim sup
𝑛→∞

{𝜔 ∈ Ω ∶ |𝑋𝑛(𝜔) − 𝑋(𝜔)| > 𝜖}] = 0

holds. We then write
𝑋𝑛

a. s.−−−⟶
𝑛→∞

𝑋.

Definition A.62 (convergence in probability). A sequence ⟨𝑋𝑛⟩𝑛∈ℕ of ran-
dom variables converges in probability to a random variable 𝑋 if

∀𝜖 ∈ ℝ+ ∶ lim
𝑛→∞

ℙ[|𝑋𝑛 −𝑋| > 𝜖] = 0

holds. We then write
𝑋𝑛

ℙ−−−⟶
𝑛→∞

𝑋.
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Almost sure convergence implies convergence in probability.

Definition A.63 (convergence in distribution, weak convergence, conver-
gence in law). A sequence ⟨𝑋𝑛⟩𝑛∈ℕ of real valued random variables with the
cumulative distribution functions 𝐹𝑛 converges in distribution (or converges
weakly or converges in law) to a random variable 𝑋 with the cumulative
distribution function 𝐹 if

∀𝑥 ∈ {𝑥 ∈ ℝ ∶ 𝐹 is continuous at 𝑥}∶ lim
𝑛→∞

𝐹𝑛(𝑥) = 𝐹(𝑥)

holds. We then write
𝑋𝑛

d−−−⟶
𝑛→∞

𝑋.

Convergence in probability implies convergence in distribution.

A.10 Lévy’s Continuity Theorem
Theorem A.64 (Lévy’s continuity theorem). Suppose that ⟨𝑋𝑛⟩𝑛∈ℕ is a
sequence of random variables, not necessarily sharing a common probability
space. If the sequence ⟨𝜙𝑛⟩𝑛∈ℕ of their characteristic functions converges
pointwise to a function 𝜙∶ ℝ → ℂ, i.e.,

lim
𝑛→∞

𝜙𝑛(𝑡) = 𝜙(𝑡) ∀𝑡 ∈ ℝ,

then the following statements are equivalent:

1. the 𝑋𝑛 converge in distribution to a random variable 𝑋, i.e.,

𝑋𝑛
d−−−⟶

𝑛→∞
𝑋;

2. 𝜙 is the characteristic function of a random variable 𝑋;

3. 𝜙 is a continuous function;

4. 𝜙 is continuous at zero;

5. the sequence ⟨𝑋𝑛⟩𝑛∈ℕ is tight, i.e.,

lim
𝑥→∞

(sup
𝑛∈ℕ

ℙ[|𝑋𝑛| > 𝑥]) = 0.

Proofs can be found in [32, Section 18.1] and in [33, Theorems 14.15 and
18.21].
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A.11 The Laws of Large Numbers and the Cen-
tral Limit Theorem

A natural question to ask how the mean value

𝑋𝑛 ∶= 𝑆𝑛
𝑛 ,

where
𝑆𝑛 ∶=

𝑛
∑
𝑖=1

𝑋𝑖,

of 𝑛 independent and identically distributed random variables 𝑋𝑖 behaves
as 𝑛 → ∞ and additionally how fast it converges if this is the case.

The answers are provided by the law of large numbers and the central
limit theorem via an expansion. Informally speaking, the law of large num-
bers

𝑋𝑛 = 𝑆𝑛
𝑛 → 𝜇,

which holds if each 𝑋𝑖 has finite mean 𝜇, yields the first term, and the
central limit theorem

√𝑛(𝑋𝑛 − 𝜇) = 𝑆𝑛 − 𝑛𝜇√𝑛 → 𝜉 ∼ 𝑁(0, 𝜎2),

which holds if additionally each 𝑋𝑖 has finite variance 𝜎2, yields the second
term in the informal expansion

𝑋𝑛 ≈ 𝜇 + 𝜉√𝑛
or

𝑆𝑛 ≈ 𝜇𝑛 + 𝜉√𝑛.
In the following, the law of large numbers and the central limit theorem

are stated and proven.

Theorem A.65 (weak law of large numbers). Suppose ⟨𝑋𝑖⟩𝑖∈ℕ is a sequence
of independent and identically distributed integrable random variables with
expected value 𝜇 ∶= 𝔼[𝑋𝑖]. Then

𝑋𝑛
ℙ−−−⟶

𝑛→∞
𝜇.

Proof using Chebyshev’s inequality and assuming finite variance. Under the
additional assumption that all random variables 𝑋𝑖 have finite variance, i.e.,
𝕍[𝑋𝑖] < ∞ for all 𝑖 ∈ ℕ, Chebyshev’s inequality, Theorem A.50, can be used
to show the weak law of large numbers.
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Since the random variables are independent, we have

𝕍[𝑋𝑛] =
1
𝑛2𝕍[

𝑛
∑
𝑖=1

𝑋𝑖] = 𝑛𝜎2

𝑛2 = 𝜎2

𝑛 .

Therefore applying Chebyshev’s inequality, Theorem A.50, to 𝑋𝑛 yields

∀𝑘 ∈ ℝ+ ∶ ℙ[|𝑋𝑛 − 𝜇| ≥ 𝑘] ≤ 𝜎2

𝑘2𝑛,

which implies
∀𝑘 ∈ ℝ+ ∶ lim

𝑛→∞
ℙ[|𝑋𝑛 − 𝜇| ≥ 𝑘] = 0,

i.e.,
𝑋𝑛

ℙ−−−⟶
𝑛→∞

𝜇,

which concludes the proof.

Proof using characteristic functions. The (complex) Taylor expansion around
zero of the characteristic function 𝜙𝑋1

of random variable 𝑋1 with finite
mean 𝜇 can be written as

𝜙𝑋1
(𝑡) = 1 + i𝜇𝑡 + 𝑜(𝑡),

where 𝑜(𝑡) denotes a function that goes to zero more rapidly than 𝑡. Here
we have used (A.11); for 𝑘 = 0 we have 𝜙𝑋1

(0) = 1, and for 𝑘 = 1 we find
𝜙′
𝑋1

(0) = i𝜇. The same expansion holds for the other random variables,
since they are all identically distributed.

Therefore the characteristic function 𝜙𝑋𝑛
of the mean 𝑋𝑛 is

𝜙𝑋𝑛
(𝑡) = (𝜙𝑋1

( 𝑡
𝑛))

𝑛
= (1 + i𝜇 𝑡

𝑛 + 𝑜( 𝑡
𝑛))

𝑛

Its limit is
∀𝑡 ∈ ℝ∶ lim

𝑛→∞
𝜙𝑋𝑛

(𝑡) = ei𝜇𝑡

due to the well-known limit lim𝑛→∞(1 + 𝑥/𝑛)𝑛 = e𝑥. The limit ei𝜇𝑡 is the
characteristic function of the constant random variable 𝜇. Therefore, by
Lévy’s continuity theorem, Theorem A.64, the 𝑋𝑛 converge in distribution
to 𝜇 as 𝑛 → ∞, i.e.,

𝑋𝑛
d−−−⟶

𝑛→∞
𝜇.

Finally, since 𝜇 is a constant, convergence in distribution to 𝜇 and con-
vergence in probability to 𝜇 are equivalent. Therefore we even have

𝑋𝑛
ℙ−−−⟶

𝑛→∞
𝜇,

which concludes the proof.
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Theorem A.66 (strong law of large numbers). Suppose ⟨𝑋𝑖⟩𝑖∈ℕ is a se-
quence of independent and identically distributed integrable random variables
with expected value 𝜇 ∶= 𝔼[𝑋𝑖]. Then

𝑋𝑛
a. s.−−−⟶
𝑛→∞

𝜇.

Theorem A.67 (central limit theorem). Suppose ⟨𝑋𝑖⟩𝑖∈ℕ is a sequence of
independent and identically distributed random variables 𝑋𝑖 with expected
value 𝜇 ∶= 𝔼[𝑋𝑖] and finite variance 𝜎2 ∶= 𝕍[𝑋𝑖] < ∞. Then

√𝑛(𝑋𝑛 − 𝜇) d−−−⟶
𝑛→∞

𝑁(0, 𝜎2).

In other words, the pointwise convergence to the cumulative distribution
function of the normal distribution 𝑁(0, 𝜎2) means that

∀𝑥 ∈ ℝ∶ lim
𝑛→∞

ℙ[√𝑛(𝑋𝑛 − 𝜇) ≤ 𝑥] = Φ(𝑥𝜎) ,

where Φ is the cumulative distribution function of the standard normal
distribution.

Proof. The classical proof uses characteristic functions. Since the random
variables 𝑋𝑖 are independent and identically distributed by assumption,
their sum ∑𝑛

𝑖=1𝑋𝑖 has mean 𝑛𝜇 and variance 𝑛𝜎2. We define the random
variables

𝑌𝑖 ∶=
𝑋𝑖 − 𝜇

𝜎
that have zero mean and unit variance. Just as the 𝑋𝑖, they are also inde-
pendent and identically distributed. Using the 𝑌𝑖, we have

𝑍𝑛 ∶= ∑𝑛
𝑖=1𝑋𝑖 − 𝑛𝜇√

𝑛𝜎2
=

𝑛
∑
𝑖=1

𝑌𝑖√𝑛.

The characteristic function 𝜙𝑍𝑛
of 𝑍𝑛 is the product

𝜙𝑍𝑛
(𝑡) = 𝜙∑𝑛

𝑖=1
𝑌𝑖√𝑛
(𝑡) =

𝑛
∏
𝑖=1

𝜙𝑌𝑖
( 𝑡√𝑛) = (𝜙𝑌1

( 𝑡√𝑛))
𝑛
,

where the last equality holds since all the 𝑌𝑖 are identically distributed.
The Taylor expansion of the characteristic function 𝜙𝑌1

around zero
starts with the terms

𝜙𝑌1
( 𝑡√𝑛) = 1 − 𝑡2

2𝑛 + 𝑜( 𝑡2
2𝑛) ,

where 𝑜(𝑡2/𝑛) denotes a function that goes to zero more rapidly than 𝑡2/𝑛.
To obtain this Taylor expansion, we have used (A.11); for 𝑘 = 0 we have
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𝜙𝑌1
(0) = 1, for 𝑘 = 1 we find 𝜙′

𝑌1
(0) = 0 since 𝔼[𝑌1] = 0, and for 𝑘 = 2 we

have 𝜙″
𝑌1
(0) = −𝔼[𝑌 2

1 ] = −𝕍[𝑌1] = −1.
Using this Taylor expansion, we find the characteristic function of 𝑍𝑛 as

𝜙𝑍𝑛
(𝑡) = (1 − 𝑡2

2𝑛 + 𝑜( 𝑡2
2𝑛))

𝑛
,

which has the limit
lim
𝑛→∞

𝜙𝑍𝑛
(𝑡) = e−𝑡2/2

due to the well-known limit lim𝑛→∞(1 + 𝑥/𝑛)𝑛 = e𝑥.
The limit e−𝑡2/2 is the characteristic function of the standard normal dis-

tribution 𝑁(0, 1). Therefore, by Lévy’s continuity theorem, Theorem A.64,
the 𝑍𝑛 converge in distribution to 𝑁(0, 1) as 𝑛 → ∞, i.e.,

𝑍𝑛
d−−−⟶

𝑛→∞
𝑁(0, 1),

which implies
∑𝑛

𝑖=1𝑋𝑖 − 𝑛𝜇√𝑛
d−−−⟶

𝑛→∞
𝑁(0, 𝜎2).

Since
∑𝑛

𝑖=1𝑋𝑖 − 𝑛𝜇√𝑛 = 𝑛𝑋𝑛 − 𝑛𝜇√𝑛 = √𝑛(𝑋𝑛 − 𝜇),

we find √𝑛(𝑋𝑛 − 𝜇) d−−−⟶
𝑛→∞

𝑁(0, 𝜎2),

which concludes the proof.

A.12 Wald’s Equation
In its basic form, Wald’s equation makes it possible to simplify a sum of
random variables, whose number of terms is itself a random variable. More
precisely, suppose that the number of terms in the sum is an integer valued
random variable 𝑁 such that 𝑁 ≥ 1 and that it is independent of the
sequence ⟨𝑋𝑛⟩𝑛∈ℕ of real valued, independent, and identically distributed
random variables 𝑋𝑛 to be summed. Then the expected value of the sum
of 𝑁 terms of 𝑋𝑛 is given by

𝔼[
𝑁
∑
𝑛=1

𝑋𝑛] = 𝔼[𝑁]𝔼[𝑋1],

i.e., it is equal to the expected number of terms times the expected value of a
single term, as can be expected since all random variables are independent.

More generally, the following theorem holds.
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Theorem A.68 (Wald’s equation). Suppose

1. that ⟨𝑋𝑛⟩𝑛∈ℕ is a sequence of real valued integrable random variables,

2. that 𝑁 is an integer valued random variable such that 𝑁(Ω) ⊂ ℕ⧵{0},

3. that 𝔼[𝑋𝑛J𝑛 ≤ 𝑁K] = 𝔼[𝑋𝑛]ℙ[𝑛 ≤ 𝑁] for all 𝑛 ∈ ℕ, and

4. that the infinite sum
∞
∑
𝑛=1

𝔼[|𝑋𝑛|J𝑛 ≤ 𝑁K] < ∞

converges.

Then the random variables

𝑆𝑁 ∶=
𝑁
∑
𝑛=1

𝑋𝑛,

𝑇𝑁 ∶=
𝑁
∑
𝑛=1

𝔼[𝑋𝑛]

are integrable and have the same expected value, i.e.,

𝔼[𝑆𝑁 ] = 𝔼[𝑇𝑁 ].

If additionally

5. all random variables 𝑋𝑛, 𝑛 ∈ ℕ, have the same expected value and

6. the random variable 𝑁 is integrable,

then Wald’s equation
𝔼[𝑆𝑁 ] = 𝔼[𝑁]𝔼[𝑋1]

holds.

Proof. In the first step, we show that the random variable 𝑆𝑁 is integrable,
i.e., 𝔼[|𝑆𝑁 |] < ∞. Using the partial sums

𝑆𝑖 ∶=
𝑖

∑
𝑛=1

𝑋𝑛, 𝑖 ∈ ℕ,

we have
|𝑆𝑁 | =

∞
∑
𝑖=1

|𝑆𝑖|J𝑖 = 𝑁K.
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A.12. Wald’s Equation

The Lebesgue monotone convergence theorem, Theorem A.34, applied to the
partial sums 𝑘 ↦ ∑𝑘

𝑖=1 |𝑆𝑖|J𝑖 = 𝑁K means that integration and summation
can be interchanged, yielding

𝔼[|𝑆𝑁 |] = 𝔼[
∞
∑
𝑖=1

|𝑆𝑖|J𝑖 = 𝑁K] =
∞
∑
𝑖=1

𝔼[|𝑆𝑖|J𝑖 = 𝑁K].
The triangle inequality gives

∀𝑖 ∈ ℕ∶ |𝑆𝑖| ≤
𝑖

∑
𝑛=1

|𝑋𝑛|

which implies

𝔼[|𝑆𝑁 |] =
∞
∑
𝑖=1

𝔼[|𝑆𝑖|J𝑖 = 𝑁K] ≤ ∞
∑
𝑖=1

𝑖
∑
𝑛=1

𝔼[|𝑋𝑛|J𝑖 = 𝑁K].
Here the order of summation can be changed, since all terms are non-
negative. Therefore we have the estimate

𝔼[|𝑆𝑁 |] ≤
∞
∑
𝑛=1

∞
∑
𝑖=𝑛

𝔼[|𝑋𝑛|J𝑖 = 𝑁K] = ∞
∑
𝑛=1

𝔼[|𝑋𝑛|J𝑛 ≤ 𝑁K].
Assumption 4 now yields 𝔼[|𝑆𝑁 |] < ∞, i.e., the random variable 𝑆𝑁 is
integrable.

In the second step, we show that the random variable 𝑇𝑁 is integrable,
i.e., 𝔼[|𝑇𝑁 |] < ∞. Using the partial sums

𝑇𝑖 ∶=
𝑖

∑
𝑛=1

𝔼[𝑋𝑛], 𝑖 ∈ ℕ,

we have
|𝑇𝑁 | =

∞
∑
𝑖=1

|𝑇𝑖|J𝑖 = 𝑁K.
Analogously to the first step, the Lebesgue monotone convergence theorem,
Theorem A.34, yields

𝔼[|𝑇𝑁 |] = 𝔼[
∞
∑
𝑖=1

|𝑇𝑖|J𝑖 = 𝑁K] =
∞
∑
𝑖=1

𝔼[|𝑇𝑖|J𝑖 = 𝑁K] = ∞
∑
𝑖=1

|𝑇𝑖|ℙ[𝑖 = 𝑁].

The triangle inequality gives

∀𝑖 ∈ ℕ∶ |𝑇𝑖| ≤
𝑖

∑
𝑛=1

|𝔼[𝑋𝑛]|,
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which implies

𝔼[|𝑇𝑁 |] ≤
∞
∑
𝑖=1

𝑖
∑
𝑛=1

|𝔼[𝑋𝑛]|ℙ[𝑖 = 𝑁].

Here the order of summation can be changed, since all terms are non-
negative. Therefore we have the estimate

𝔼[|𝑇𝑁 |] ≤
∞
∑
𝑛=1

∞
∑
𝑖=𝑛

|𝔼[𝑋𝑛]|ℙ[𝑖 = 𝑁] =
∞
∑
𝑛=1

|𝔼[𝑋𝑛]|
∞
∑
𝑖=𝑛

ℙ[𝑖 = 𝑁]

=
∞
∑
𝑛=1

|𝔼[𝑋𝑛]|ℙ[𝑛 ≤ 𝑁].

Due to Assumption 3 and Jensen’s inequality, Theorem A.48, we find the
estimates

∀𝑛 ∈ ℕ∶ |𝔼[𝑋𝑛]|ℙ[𝑛 ≤ 𝑁] = |𝔼[𝑋𝑛J𝑛 ≤ 𝑁K]| ≤ 𝔼[|𝑋𝑛|J𝑛 ≤ 𝑁K]
for the single terms of the sum, which result in

𝔼[|𝑇𝑁 |] ≤
∞
∑
𝑛=1

𝔼[|𝑋𝑛|J𝑛 ≤ 𝑁K].
Assumption 4 now yields 𝔼[|𝑇𝑁 |] < ∞, i.e., the random variable 𝑇𝑁 is
integrable.

In the third step, the expected value 𝔼[𝑆𝑁 ] is calculated. The Lebesgue
dominated convergence theorem, Theorem A.35, with the functions 𝑆𝑖 and
with the majorant |𝑆𝑁 | (since 𝑁 ≥ 1) yields

𝔼[𝑆𝑁 ] = 𝔼[
∞
∑
𝑖=1

𝑆𝑖J𝑖 = 𝑁K] =
∞
∑
𝑖=1

𝔼[𝑆𝑖J𝑖 = 𝑁K],
which can also be written as

𝔼[𝑆𝑁 ] =
∞
∑
𝑖=1

𝑖
∑
𝑛=1

𝔼[𝑋𝑛J𝑖 = 𝑁K]
by substituting the definition of 𝑆𝑖. Because of the absolute convergence of
this sum shown in the first step, the order of summation can be changed
such that we arrive at

𝔼[𝑆𝑁 ] =
∞
∑
𝑛=1

∞
∑
𝑖=𝑛

𝔼[𝑋𝑛J𝑖 = 𝑁K].
We again use the Lebesgue dominated convergence theorem, Theorem A.35,
with the majorant |𝑋𝑁 | to change the order of the expectation operator and
the inner summation to find

𝔼[𝑆𝑁 ] =
∞
∑
𝑛=1

∞
∑
𝑖=𝑛

𝔼[𝑋𝑛J𝑖 = 𝑁K] = ∞
∑
𝑛=1

𝔼[
∞
∑
𝑖=𝑛

𝑋𝑛J𝑖 = 𝑁K] =
∞
∑
𝑛=1

𝔼[𝑋𝑛J𝑛 ≤ 𝑁K].
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Due to Assumption 3 and the 𝜎-additivity of the probability measure, the
terms in the last sum are equal to

𝔼[𝑋𝑛J𝑛 ≤ 𝑁K] = 𝔼[𝑋𝑛]ℙ[𝑛 ≤ 𝑁] = 𝔼[𝑋𝑛]
∞
∑
𝑖=𝑛

ℙ[𝑖 = 𝑁],

which can be rewritten as

𝔼[𝑋𝑛J𝑛 ≤ 𝑁K] = ∞
∑
𝑖=𝑛

𝔼[𝔼[𝑋𝑛]J𝑖 = 𝑁K]
using the properties of the expected value. With these terms, the sum
becomes

𝔼[𝑆𝑁 ] =
∞
∑
𝑛=1

∞
∑
𝑖=𝑛

𝔼[𝔼[𝑋𝑛]J𝑖 = 𝑁K] = ∞
∑
𝑖=1

𝑖
∑
𝑛=1

𝔼[𝔼[𝑋𝑛]J𝑖 = 𝑁K],
where we could change the order of summation due to the absolute conver-
gence shown in the first step, i.e., 𝔼[|𝑆𝑁 |] < ∞. By the definition of 𝑇𝑖, this
is equal to

𝔼[𝑆𝑁 ] =
∞
∑
𝑖=1

𝔼[𝑇𝑖J𝑖 = 𝑁K] = ∞
∑
𝑖=1

𝔼[𝑇𝑁J𝑖 = 𝑁K].
The Lebesgue dominated convergence theorem, Theorem A.35, with the
majorant |𝑇𝑁 | makes it possible to change the order of the expectation
operator and the summation to find

𝔼[𝑆𝑁 ] =
∞
∑
𝑖=1

𝔼[𝑇𝑁J𝑖 = 𝑁K] = 𝔼[
∞
∑
𝑖=1

𝑇𝑁J𝑖 = 𝑁K].
Furthermore, we can calculate

𝔼[𝑆𝑁 ] = 𝔼[𝑇𝑁
∞
∑
𝑖=1

J𝑖 = 𝑁K] = 𝔼[𝑇𝑁J1 ≤ 𝑁K] = 𝔼[𝑇𝑁 ],

since the codomain of the random variable 𝑁 is ℕ ⧵ {0}. This proves the
third statement of the theorem.

If Assumptions 5 and 6 are additionally satisfied, then 𝔼[𝑇𝑁 ] can be
simplified to

𝔼[𝑇𝑁 ] = 𝔼[
𝑁
∑
𝑛=1

𝔼[𝑋𝑛]] = 𝔼[𝑋1]𝔼[
𝑁
∑
𝑛=1

1] = 𝔼[𝑁]𝔼[𝑋1],

which completes the proof.
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Appendix A. Measure and Probability Theory

In the last line of the proof, it becomes clear that it is only required
that the expected values 𝔼[𝑋𝑛] of the random variables are identical; this
is sufficient to lift them out of the sum and the outer expected value. In
particular, the random variables are not required to be independent.

The last line of the proof also explains why all the sums in the statement
of the theorem start at one and why zero is excluded from the codomain of
the random variable 𝑁 in Assumption 2. These two facts match such that
𝔼[∑𝑁

𝑛=1 1] = 𝔼[𝑁].
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