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Natural Language Processing (NLP): What is it?

● Computational methods for understanding or generating natural language

● Goal: Process/analyse human language with computers

Analysis: build useful representations from natural language input

Synthesis/Generation: produce natural language output from (structured) 

representations

● Massive Challenge: make the meaning (semantics, pragmatics) of human 

language accessible to computers
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NLP: Why it is difficult

● Ambiguity: same text can have very different meanings

● Different texts can have same meaning, e.g. different wordings of 

summaries of the same document

● No hard rules: socio-linguistic differences, colloquial and informal language 

(social media!)

● So many languages! 

● Code and language switching: mixing standard language and dialect, 

mixing languages; often in emails and social media
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NLP: Why it is difficult - Examples
● "He went to the bank"  (savings bank, river bank?)

● "If you love money problems show up"  (love money or love money problems?); "He wrote a report on Mars" 

(report written being on Mars or report about Mars), "Cop kills man with knife" (who has the knife?)

● "Mark saw the men with the telescope. He had brown hair." (who had the telescope / brown hair?)

● Headline: "Teacher Strikes Idle Kids" (cred. Dan Klein)

● "This is shit" vs. "This is the shit" 

● “@angry_barista I baked you a cake but I ated it”, "Why won't you show my location?!   http://twitpic.com/2y2es", 

"@markhardy1974 Me too  #itm" (ex. from kaggle Sentiment140 tweets dataset)

● "he wanted to do it but he got cold feet which made him lose his face" (multi-word expressions)

● “It is cold” (statement or request for action → pragmatics)

● ⇒ Often clear from context or with background knowledge but system has to deal with it
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Linguistics View 
● Speech signal
● Phonetic form: visual representation of sounds; International Phonetic Alphabet (IPA) 

https://www.cambridge.org/features/IPAchart/  
● Phoneme – unit of sound: /p/, /t/, /k/, …
● Syllable – unit of pronunciation: /wa-ter/, /un-for-giv-ing/
● Morpheme: water, un-forgiv-ing
● Word/word form (type/token, stem/inflected form) : forgiv, forgave, forgiven, forgiving 
● Phrase: an unforgiving environment (NP), is unforgiving (VP)
● Sentence: The deep sea is an unforgiving environment.
● Text: The deep sea is an unforgiving environment. This is why we should not stay in it.

5
Slide 5

https://www.cambridge.org/features/IPAchart/


AI Summer School 2023

Computational / Practical View

● Text: Sequence of (Unicode) characters

● Document: a unit of text that somehow belongs together

An article, a book, a page in a book, a Tweet, …

Can have associated meta-data (author, publishing date, keywords..)

● Words/Tokens: (usually) the relevant parts of the text

● Corpus: a collection of documents that belong together
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Example NLP Applications

● Analysis: Text classification (e.g. spam detection)

● Analysis: Information Extraction (IE, extract structured information from 

text). Find mentions of names, organizations, relationships, events …

● Synthesis: Content Generation from structured information (e.g. weather 

forecast writing)

● Both: Question Answering

● Both: Machine Translation
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Approaches to NLP

● Classical divide and conquer:
○ break up into smaller tasks
○ develop methods to solve those tasks
○ combine tasks into a "pipeline" to solve overall task
○ for each task, there can be many different possible approaches
○ some or all of the sub-tasks may be based on some form of machine learning

● "End-to-end":
○ Single (Deep-Learning) model that does it all in one go
○ But, some NLP tasks (Tokenization) and ML tasks (data-loaders, batching..) are 

still needed
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Example NLP Tasks

● Tokenization, Sentence splitting
● POS tagging, Lemmatization
● Parsing
● Entity recognition and disambiguation/linking
● Reference resolution
● Relation extraction
● Text classification
● Topic detection, Text Clustering
● Keyword extraction

Let's look at some of those in more detail!
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Task: Tokenization

● We are interested in words and their properties

● What is a word? "It's", "don't", "data-mining", what about punctuation?

● Divide into units to process and call it a "Token":

e.g. split on white space or punctuation 

● White space does not work for each language (e.g. Chinese, Turkish) → sub-word units

● Can have multi-word tokens, e.g. "it's", suntan lotion, “New York Times”, “kick the bucket”

● Can have punctuation tokens

● Special tokens, e.g. URLs, @names, #multiwordhashtags

● Result: text is represented as a sequence of Tokens instead of a string
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Task: Sentence Splitting (1)

Sentences are a good unit of analysis:

● a sentence is a self-contained unit of meaning relations,
● it is syntactically complete, and 
● typically contains subject, predicate, object(s), modifiers

The house is green.
The green house belongs to my cousin.

● Sometimes good for splitting text into 1 or more sentences for technical reasons (limited input size, 
parallelization etc.)

11
Slide 11



AI Summer School 2023

Task: Sentence Splitting (2)

● E.g.: split on punctuation (full stop, exclamation mark), double new lines
- but not e.g. after abbreviation with dot!

● There are also more sophisticated methods which make use of some of the subtasks and 
approaches we discuss later.

● After sentence splitting, the text may get represented as a sequence of sentences. Each 
sentence being a sequence of tokens.

(((After) (sentence) (splitting) (,) (the) (text) (may) (get) (represented) (as) (a) (sequence) (of) (sentences) (.))
((Each) (sentence) (being) (a) (sequence) (of) (tokens) (.)))

● Alternative: Stand-off Annotations
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Stand-off Annotations

● Clumsy to use nested lists of lists of tuples … (e.g. Python NLTK)
● Instead, have sets / lists of stand-off annotations:

○ Start, end offset in the original text/document: annotation links to original text
(some variations use token index instead of char offsets: no sub-token anns)

○ Type: e.g. "Token", "Person", "NP"
○ Features: information about that text, e.g. word of type noun, noun phrase, person 

name
○ Arbitrary many, arbitrarily overlapping, grouped into "sets"
○ Can be linked to form a tree or graph
○ Select the ones useful for processing
○ Details differ between implementations: SpacY, GateNLP, BRAT, …
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Stand-off Annotations: Example
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Example annotated 
document with several types 
of stand-off annotations from 
the GateNLP framework: 

https://tinyurl.com/stoffann

https://gatenlp.github.io/python-gatenlp/examples/stand-off-anns.html
https://gatenlp.github.io/python-gatenlp/examples/stand-off-anns.html
https://github.com/GateNLP/python-gatenlp/
https://tinyurl.com/stoffann


AI Summer School 2023

Task: Part of Speech (POS) Tagging

● We need more information about each word/token: is it verb, noun?

● Ideally also additional info (gender, time, singular/plural, case, …)

● Lookup in a dictionary does not work well: 

"duck" vs. "duck", "lie" vs. "lie" …

● Use machine learning! For this we need:
○ a pre-annotated corpus
○ features for each word to use for learning
○ machine learning algorithm
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POS Tagging: Corpus Examples

● Several Treebanks for different languages, many different tag-sets
● E.g. Penn Treebank (Marcus1993, Taylor2003)
● Universal Dependencies Corpus: 

○ Harmonized POS tags 
○ Corpora for many languages
○ https://universaldependencies.org/
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1   Seriously   seriously ADV
2   :         :   PUNCT
3   do  do  AUX 
4   not not PART
5   waste   waste   VERB
6   your you  PRON
7   time time NOUN
8   .   .   PUNCT   

○ CoNLL-U Annotation Format
○ https://universaldependencies.org/format.html 

https://universaldependencies.org/
https://universaldependencies.org/format.html
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● Penn Treebank PoS tagset

● Taylor2003

POS Tagging: Tagsets Universal & Penn
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● Universal PoS tags: core part-of-speech categories
● https://universaldependencies.org/u/pos/ 

● In addition: universal features to distinguish additional 
lexical and grammatical properties of words

https://universaldependencies.org/u/pos/


AI Summer School 2023

POS Tagging: Features (1)

● Suffixes of lengths 1..k, prefixes of length 1..l

● Sentence start / end 

● Punctuation, contains number, starts with upper-case, all-upper, contains 

hyphen, ..

● Add features from previous and succeeding n tokens (context window)

● Add POS-tag prediction of previous word(s) as features

● (Toutanova2000)
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POS Tagging: Features (2)

● But knowing which word exactly may also be useful

● How to add this information as a feature?

● Word number: tens of thousands of numbers

● One-hot features: tens of thousands of features

● Idea: group words into k clusters 

● Use only k numbers or k one-hot features
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Brown Clustering

● Hierarchical, agglomerative algorithm (Brown1992)
● Maximise the mutual information of cluster bigrams:

● Words that appear in the same context tend to get clustered together:
    Friday, Monday, Thursday, weekends, Sundays …
    People, guys, folks, chaps, doubters, blokes …
    Down, backwards, ashore, sideways, ….

● The contexts of words give important information about the word!
● Each cluster represents a "word type/class" or "context class"
● Use the cluster number as a feature (represented as number or one-hot vector)

20
Slide 20

https://aclanthology.org/J92-4003.pdf


AI Summer School 2023

POS Tagging: Machine Learning (1)

● Use the best ML Algorithm of the time!

● E.g.: Logistic regression; Decisions trees; Random Forests; Support vector machines and 
other large margin algorithms

● Differences: handling of numerical vs. categorical features, handling of very many/sparse 
features, model complexity, …

● Creates a model: mapping from the features of the current, preceding, following token to POS 
tag, each token gets classified separately 
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POS Tagging: Machine Learning (2)

● Dependencies in how likely each POS tag follows another!

E.g.: DET most often before NOUN or PRON

● Sequence labelling / sequence tagging algorithm: 

(linear-chain) Conditional Random Fields (Lafferty2001)

● Discriminative model based on graphical models.

● Find argmaxy p(y|x) (using Viterbi algorithm): 

Whole sequence gets labeled in one go!

22
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https://repository.upenn.edu/entities/publication/c9aea099-b5c8-4fdd-901c-15b6f889e4a7
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Word representations

● Brown clusters are helpful but can we represent words better?

● Inspiration from Information Retrieval (IR)

● Represent a document by a vector with n elements, 

n = number of different words (word forms) in the corpus

● The ith element contains some numerical information about that word:

indicator (0, 1), term frequency (nr occurrences in the text), …

● Bag of Words (BoW) representation of a text / document

● Note: BoW vector of a single word = one-hot vector
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Text Representation: Bag of Words (BoW)

● Problem 1: tens of thousands of elements per vector

● Problem 2: no information about how the words occur in sequence: 

"bad, not good at all" = "good, not bad at all"

● Bag of n-grams: one feature per e.g. bigram "good not", "not bad" …, 

increases Problem 1, decreases Problem 2

● Can we do better?
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Word Representation: Inspiration from IR (1)

● Information Retrieval: Initially represent  each document of a corpus by BoW 
vector

● The corpus can be represented by a matrix with words in one dim, documents in 
the other dim, where the value shows how often word i occurs in document j

● Each document is represented by a vector of words (BoW),
each word is represented by a vector of documents

● Documents can be compared by finding the similarity between their word vectors
● Words can be compared by finding the similarity of their document vectors!
● Usually using cosine similarity:  
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Word Representation: Inspiration from IR (2)

● These term/document matrices are huge, mostly sparse & very redundant

● Try rank reduction: use Singular Value Decomposition (SVD) and choose 

top k singular values:

● Latent Semantic Indexing (LSI): documents k-dim vectors of "concepts", 

words represented by k-dim vectors

● Now have vectors of dim in the 100s instead of 100k s to represent words

● "dense" word vectors, "word embeddings"

● Cosine similarity still works well on those!
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Word Embeddings (1)

● Problem: embedding from occurrences over a whole (possibly large document)
But local context is important!

● Can we create word embeddings based on the co-occurrence of words the local 
context within a corpus?

● Engineering approach: use a neural network: Word2Vec (Mikolov2013):
○ Continuous Bag of Words (CBOW): predict the center word of a context window from its 

neighboring words
○ Skip-Gram: predict the neighboring words from the center word
○ For both approaches, we can choose the dimensionality we want, e.g. 200
○ Simple 1 hidden layer network, symmetric windows (e.g. 5), negative samples 2-15
○ Use learned network parameters as embeddings
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Word Embeddings (2)

● Mathematical approach: generate a matrix and do dimensionality reduction
● Many different approaches, most used: Glove (Pennington2014)
● Define context window size and symmetric (left+right) or asymmetric (left only)
● This gives us a n * n matrix X where n is the size of the vocabulary

Value in the matrix: co-occurrence count 
● What we want: embeddings w such that

Where the Pik are co-occurrence probabilities
● Simplification and conversion to least squares problem: 
● Use AdaGrad and stochastic sampling of Xij to train

Use               as final embeddings
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Word Embeddings (3)

● Many other approaches, e.g. FastText (Bojanowski2017):

Make use of internal structure, use subword information (char n-gram)

● Evaluating Word Embeddings:
○ Usefulness: for solving down-stream tasks (e.g. POS tagging)
○ Similarity: does it follow human intuition?
○ Analogy: v("king") - v("man") + v("woman") = closest to v("queen")

But also reflects bias: v("woman") + v("doctor") - v("man") = closest to v("nurse")
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Task: Named Entity Recognition (NER)

● Find and classify names in text: person, location, organization, gene name, 

species name, or other "chunks" of text like movie names, book titles

Task "Chunking"

● Important for Information extraction but also for subsequently finding relationships 

between such entities

● Can consist of 1 to k tokens: "Vienna", "People's Republic of China"

● How to find anywhere in text: need to convert to a manageable classification task 

● Nadeau2007, Li2020 (surveys)
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NER: BIO Coding

● For each token, assign a label that shows if the token is outside (O) a NE, is the beginning 

(B), inside (I), the end word of an NE (E), a single word NE (S),  

e.g. IOB2 format:
Alex  is going to Los   Angeles in California

B-PER O  O     O  B-LOC I-LOC   O  B-LOC

● Many similar formats, many names: BIO, BIOES=BILOU=BMEWO …

● Can use per token classification of the code similar to POS tagging

● Derive chunk boundaries from assigned codes, need to correct invalid sequences

● As with POS tagging, CRF can be used to consider the dependencies between labels
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Other Chunking tasks

● Find short token sequences of some interesting type

● Noun Phrases (NP), Verb Phrases (VP), Prepositional Phrases (PP)

This sentence contains two noun phrases. 

● Useful for more complex tasks 

e.g. Biological Event Extraction, Fine-Grained Opinion Analysis

● Which word is the most important (head) and which other words are 

attached to it?

● → (Dependency-)Parsing
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Task: Parsing (1)

● Natural language 
○ has has structure (syntax), 
○ follows construction principles (grammar) 
○ regulating how tokens (words from the lexicon) can be combined 

● Parsing 
○ analyse a sequence of tokens according to the rules of a formal grammar
○ natural languages, formal languages, data structures follow different formal grammars

● Use the tree to
○ derive structure and meaningful relations (who is doing what to whom … ?) 
○ disambiguate word categories (parts-of-speech, e.g., noun or verb), 
○ disambiguate the nesting of constituents, e.g., PP-attachment 
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Task: Parsing (2)

● Natural Language Parsing: 
○ Use linguistic knowledge for structural 

analysis, 
○ Parse a sentence into a tree

34
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(Wang2010)

Phrase Structure

● Hierarchical structure 

of phrasal constituents 

and words

● Express linear order of 

a sentence

Dependency Structure

● Word pairs linked by 

grammatical relations

● Express syntactic 

word-to-word relations
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Dependency Parsing (1)

● Identify related words and type of their relation 

● Head word – relation type – dependent word (modifies head)

● Dependency Treebanks to train parsers 
○ Universal Dependency (UD) Treebanks
○ Text annotated with Universal Dependency Relations 

https://universaldependencies.org/u/dep/ and PoS tags from the UD Tagset
○ E.g., English UD Treebanks 

https://universaldependencies.org/treebanks/en-comparison.html
● Tools and models for parsing, e.g., spaCy, NLTK, Stanza, CoreNLP, 

SyntaxNet (Andor2016, Parsey Mc Parseface)
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Dependency Parsing (2)

● Annotation formats
○ E.g., CoNLL-U https://universaldependencies.org/format.html
○ Each word is represented by 10 fields: 

ID, FORM, LEMMA, UPOS (universal PoS), lang.specific PoS (XPOS), morphological 
features (FEATS), the HEAD word, the dependency relation (DEPREL), 
head-dependency pairs (DEPS), any other annotation (MISC)
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Task: Keyword/Key Phrase Extraction

● Subtasks:
○ Candidate identification
○ Candidate ranking

● Approaches
○ Graph-based approaches:  TextRank (Mihalcea2004), Topicrank
○ Heuristic-/statistics-based models, e.g., YAKE! (computes combined score based 

on various statistics on each word, combines high-score adjacent words to 
phrases)
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Task: Named Entity Disambiguation (NERD)

● Finding NEs is not enough: is it Vienna (Austria), Vienna (Ontario), 

Vienna (Alabama), Vienna (the river running though Vienna) …

● NERD, Entity Linking 

● Distinguish by linking to some knowledge base, e.g. Wikimedia, 

Wikidata

● Some NEs may refer to an entity not in the KB, several NEs may refer 

to different entities not in the KB: clustering of new unlinked concepts
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Named Entity Disambiguation: Approaches

● Many different approaches, but frequent commonalities:

● Usually Entity Recognition (ER) is followed by Entity Disambiguation 

(ED), a few methods of doing it jointly (Kolitsas2018)

● Find semantic similarity between information about the entity (e.g. 

Wikipedia article text) and the context of the mention

● Also consider a-priory likelihood, popularity, … of each link

● Multiple entities in proximity should be "compatible"
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NER Evaluation (1)

Exact-match evaluation:

● Consider NE boundary and type together; both must be correct
● Precision P: how many of the found NEs are correct? TP/(TP+FP)
● Recall R: how many of the actual NEs have been found? TP/(TP+FN)
● F1-score: 2(PR)/(P+R)
● Micro-averaged: if there are several NE classes, average using TP/FN/FP 

over all
● Macro-averaged: Calculate per class, then average
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NER Evaluation (2)

Relaxed/lenient-match evaluation

● Consider type and (token-/character-) boundary separately, e.g. 
● MUC-6 (Grishman1996): type correct if overlaps with target, boundary correct if matches 

target boundaries, independent of type
● ACE (Doddington2004): complex scheme that is more flexible and powerful, but less 

intuitive and more difficult to use for error analysis. 

Area under curve (AUC): evaluate TP vs FP (AUC-ROC) or P vs R (AUC-PR) for different 
probability thresholds and calculate the area under that curve: depending on threshold more 
correct examples may appear but also more wrong ones.
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ML/NLP Evaluation

● What we really want to know is: "if we train a method to solve this task (e.g. NER) on this 

training set, how well will it do on new data? (generalization performance)

● A single evaluation on some train/test split does not tell very much: maybe we were lucky, 

maybe we used the right random seed?

● Instead use e.g. (class-stratified) k-fold cross-validation to get average and stdev

● Compare different approaches / settings by checking stdev or doing some significance test

● However, many papers, leaderboards still neglect this and just show bare numbers from a 

single train/test split

● Error analysis: which errors have been made? How "severe"/"surprising"?

42
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Task: Text Classification

● E.g.: sentiment/polarity classification: pos/neg, pos/neutral/neg

● E.g.: movie reviews: IMDB Movie Review Dataset: 50K texts

● Need: features, ML algorithm

● Features: how to represent the whole text for the ML algorithm?
○ BoW vector, LSI document vector
○ Sum word vectors (all; remove stop words) ⇒ DAN
○ Use list of word vectors (how? ⇒ CNN, RNN, LSTM)

43
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DAN: Deep Averaging Network

● Simple, but worked surprisingly well at the time (Iyyer2015)

● Input: averaged sum of embeddings, with optional word dropout

● Model: k hidden layers with dropout and non-linearity

● Output: softmax from final layer

● Obvious disadvantage: word order, syntax does not influence the 

input, e.g. negation cannot be handled!
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CNN (Convolutional Neural Network)

● CNN for sentence classification: Kim2014

● Sentence: limited number of words / embeddings

● Input n embeddings of dim k (padded if text is shorter than n)

n depends on the max size of the training / expected test set

● Convolutional layer with multiples filters, followed by max-pooling

● Fully connected layer with dropout and softmax output

45
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RNN: Recurrent Neural Network

● Apply a (multi-layer) NN to each input of a sequence, e.g. from left to right

● In addition to the input, at each time step, we get the hidden layer 

activations from the previous step and pass them on to the next step

● Apply back-propagation "through time"

● Advantages: no fixed sequence length, can do text both:

Classification: use last output activations

Sequence labeling: use output activations for each input

● Disadvantages: local optima, exploding/vanishing gradients
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LSTMs: Long short-term memory

● Adds Input/Forget/Ouput Gates to control flow 

(Hochreiter1997)

● Advantages: learn more complex and 

long-range patterns, less overfitting

● Disadvantages: more complex, slower to train

● Comparable Alternative: GRU (Gated Recurrent Units) 
○ Fewer gates and fewer parameters, but still often performance equal to LSTMs
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ELMO

● Embeddings from Language Models (Peters2018)
● Idea: embedding should depend on context

⇒ different embeddings for same word, depending on context
● Use forward+backward multi-layer LSTM to predict token from left and right 

context simultaneously: "Neural Language Model"
● Language Model: model                                                           (from left)
● Lower layers capture more syntactic, upper more semantic properties:

⇒ Combine (possibly learn task-specific weights)
● Contextualized word embeddings!
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Transformers

● (Vasvani2017)
● Encoder-Decoder 

sequence-to-sequence model
● Instead of RNN/CNN use a 

feed-forward architecture with 
"multi-head self attention"

● One feed-forward "column" per 
token, horizontally interconnected 
via self-attention
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Single "column":

N ×

N ×

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
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Transformers: Tokenization / Inputs

● Per-wordform tokens: large number, some wordforms very rare, 

internal word structure is ignored

● Per-byte tokens: small number, but hard for model to learn meaningful 

representations for the token

● Compromise: sub-word tokenization 
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Subword Tokenization

● Byte-Pair Encoding BPE (Sennrich2016):
○ Start with base vocabulary (unicode, byte) from a list of unique words
○ Merge tokens according to frequency to create new tokens from base tokens
○ Add new tokens and repeat, learning merge rules for splitting unseen words (tokenizer must be trained!)

● WordPiece (Schuster2012): similar to BPE, use different merge criterion

● Unigram (Kudo2018a): initialize with large vocabulary of words, substrings, characters, 

progressively trim to reduce vocabulary size: used for SentencePiece

● SentencePiece (Kudo2018b): better suited for languages that do not separate words by 

spaces, treat input as stream, treat whitespace as ordinary char

● Detokenization: reconstruct the original string including whitespace from subwords
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Transformers: Self-Attention (1)

● Attention was used before Transformers e.g. in seq2seq LSTMs: depending on 
input, use representation from different states differently by learning weights for 
combining them. 

● Transformer: attention is all you need!
● Transformer: in each layer the representation is a weighted sum of all value 

vectors in all columns. The weight is calculated from the similarity between query 
vector of the current column, and the key vectors of all columns. 

● Query, key, value vectors are calculated from the current layer input via trainable 
matrices.
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Transformers: Self-Attention (2)
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(Brunner2019)
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Transformers: Multi-head Self Attention (3)

● In order to allow different kinds of influences, have several parallel 

attention blocks per column

● Technical trick: each head uses reduced dimension d/k (k=number of 

heads) so all k attentions can be calculated in parallel

● Dimensional scaling: dot products scaled by square-root of dimension 

of vectors
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Transformers: Positional Encoding

● Since the result of self-attention is just a weighted sum, there is no 

way to find out where each value comes from

● So "position embeddings" PE are added to the input embeddings, 

where each dimension of the position embedding contains the value 

of a sine / cosine function that depends on position and dimension

● For offset k, PEpos+k can be calculated as a linear function of PEpos
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Transformer: full Encoder

● Each column has input embeddings+positional embeddings 

● Followed by multiple layers, of which each has:

● Multi-head attention

● Layer normalization  per column (norm)

● Residual connection adding the input of the layer to the output (add)

● Feed-forward dense layer with add+norm

● Per-column nonlinearity (ReLU) and dropout per sub-layer
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Encoder only transformer: BERT (Devlin2019)

● Use Transformer encoder only, designed to solve many different NLP tasks
○ Base cased/uncased: 12 layers, 768 hidden, 12 attention heads, 110M parms
○ Large cased/uncased: 24 layers, 1024 hidden, 12 attention heads, 340M parms

● First token is always a special classification token CLS, first column 

specially for classification

● Additional "segment embeddings" are added in addition to positional 

embeddings: allow to deal with several segments/sentences of text

● The model gets pre-trained on large amounts of text
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BERT: Pre-training

● Masked Language Model (MLM): mask a word/token in the input and try to predict from 
context (actually use MASK 80%, random token 10%, unchanged token 10%), only use 
masked tokens for loss function.
For this a classification head with a dense layer and softmax is added on top of all 
columns except CLS

● Next Sentence Prediction: Input are two sentences separated by a special SEP token. 
Additional Segment embeddings encode which tokens belong to which sentence. 
Binary Classification: 2nd sentence would follow 1st or not. 
For this a classification head with a dense layer and softmax is added on top of the CLS 
column
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BERT: Fine-tuning / Downstream tasks (1)

● Fine-tuning: load the pre-trained model, add appropriate head(s) and 

train on new data. The LM layers can be "frozen", have adapted 

learning rate or just get fully trained. 
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BERT: Fine-tuning / Downstream tasks (2)

● Sequence tagging: per-column classification head over label set (POS tags, IOB 
codes), optionally followed by a CRF layer

● Classification: add a single dense layer after the output of the CLS column, 
followed by softmax

● Question answer identification: find start/end token of answer for a question in 
context: softmax over all context token column outputs after dot product with start / 
end vectors

● Get contextual word vectors: just forward the text and use the column outputs
● Many subtasks can be based on these
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BERT: Zero Shot Classification

● Given: some text to classify and a number of candidate labels

● A template for creating the hypothesis sentence from labels

● Use Natural Language Inference NLI: get probability of text-to-classify 

implying the filled template: 

"That movie was great" implies "This is about movies[music|books]"?

● Alternative: Embed both the text and the (contextualized) 

label/template and use similarity
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Transformer Encoder-Decoder (1)

● Original Transformer has both encoder and decoder, intended for Machine 

Translation

● Seq2seq model: given an input sequence of tokens, generate an output 

sequence of tokens

● This has been done before using e.g. LSTMs

● Decoder is similar to encoder: 

● Adds another masked multi-head attention where only previous positions 

get attended to
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Transformer Encoder-Decoder (2)

● Decoder outputs one token at at time: to generate the next output token, the 
token sequence generated so far (or the special start of sentence token SOS) 
gets fed to the input right shifted: causal autoregressive text generation.

● Output embedding goes through softmax to generate token probabilities
● Rather than always using the most probable token, use beam search to find 

better (higher overall probability) combinations of tokens
● Stop when the end of sentence (EOS) token is the most probable output
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Decoder only transformer: GPT-x (1)

● GPT (Radford2018): Use transformer decoder to pre-train language model then 
use fine-tuning on textual entailment, similarity, question answering, 
commonsense reasoning.

● 12 layers, 768-dim, 12 attention heads, 
3072 hidden nodes for feed forward
context size 512

● BPE tokenization
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Decoder only transformer: GPT-x (2)

● GPT-2 (Radford2019): like GPT with small modifications (layer norm at 
beginning of sub-block, final normalization after attention, context size is now 
1024.

● GTP-3 (Brown2020): like GPT-2, but alternating dense and sparse attention 
patterns in the layers. 
○ 96 layers, 12288-dim, 96 attention heads, context window of 2048 tokens

3.2M batch size, 175B parameters
○ No fine-tuning of the base model
○ Pre-trained on ~500B tokens of text (93% English)
○ Shows remarkable zero-shot capabilities
○ Large Language Model (LLM): huge model, trained on huge dataset
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Decoder only transformer: GPT-x (3)

● GPT-3.5: no scientific papers, fewer information from OpenAI. 
○ Based on GPT-3, fine-tuned and improved using RLHF (Reinforcement Learning from 

Human Feedback)
○ Several versions with different properties (context size 4k-16k, 1.3B-175B parms(?))

● GPT-4 (OpenAI2023a): 
○ Multimodal (text and image inputs)
○ Trained on both publicly available and licensed data
○ Context size 32k tokens
○ Fine-tuned on multiple task and using RLHF 
○ "No further details about the architecture (including model size)"
○ Parameters: unknown, estimated to be around 1T
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Reinforcement Learning from Human Feedback

● Start with pre-trained language model

● Optionally fine-tune on a variety of tasks

● Gather many prompts (e.g. from deployed LM users) and generate responses from current 

and possibly also other LMs

● Human annotators order responses in order of preference, generate a score using an 

Elo(chess tournament scoring)-like method 

● Train a scoring (e.g. Elo-rating) model on the prompt/response + score data

● Use e.g. Proximal Policy Optimization (PPO) (or NLPO, A2C, ..) with a copy of the LM to 

tune some or all of its parameters (see https://huggingface.co/blog/deep-rl-ppo) 
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Other LLMs (1)

● Number of pre-trained LLMs, both with and without fine-tuning (FT) or RLHF grows rapidly
● While recent models from OpenAI, Google are closed and restricted (CS/R), open source 

(OS) models start to appear on the scene (what does "open source" mean in that context 
though?)

● PaLM/PaLM2 (Chowdhery2022, Google2023a): (8B-)540B parms, 118 Layers, 48 heads, 
18432-dim, trained on 780B token corpus (123 languages, 78% en, 24 proglangs)

● LLaMA (Touvron2023) and many others derived from it, OS, 7B-65B parms, 64 heads, 
8192-dim, 80 layers, trained on 1.4T tokens (unknown language distr.)

● BLOOM (Scao2022): 176B parms, OS, Responsible AI License (RAIL), ROOTS corpus 
(1.6TB, 46 languages, 13 proglangs, ~70% non-English)
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Other LLMs (2)

● GALACTICA (Taylor2022) (FT): Intended for scientific knowledge. Public demo showed 
"hallucinations" (inventing competent sounding stuff) got pulled off. Trained on papers, 
code, KBs, .. 106B tokens. 125M-120B parms, 96 layers, 10240-dim, 80 heads

● Falcon (Penedo2023): improve pre-training data, filter, deduplicate, 600B token subset of 
5000B token set is open-sourced. Model: 40B,7B parms, FT versions available, OS

● Sparrow (Glaese2022):  RLHF for different aspects of for "good dialogue". 70B parms, can 
lookup information, CS/R

● LaMDA (Thoppilan2022): up to 137B, 64 layers, trained on documents, dialogs, 1.5T 
tokens (> 90% English). Allow to query knowledge sources, translator, calculator

● … and many, many others
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LLMs and LLM-based NLP: (some) Advantages & Issues

● (+) Huge pre-training improves overall performance on many tasks
● (+) Capable of solving many tasks with the same or just slightly modified model 

(zero/few-shot)
● (+) capable of resolving common ambiguities, e.g. Winograd Schema Challenge 

(Kocijan2022)
● (-) "Hallucinations": competent-sounding nonsense. Variation of often-seen 

(catastrophic) failure modes with ML, esp. DNNs
● (-) Hard to control bias, performance and bias depends on selection of TB of data
● (-) As with most ML-based approaches: does not know what it doesn't know
● (-) As with most DNN-based ML approaches: missing model explainability
● (-) Currently: not easily accessible (effort in hardware, data, know-how) 

     ⇒ dependency on large-player models, APIs and solutions.
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Pre-training Corpora Issues

● Mostly "accessible" data is used (web crawls, wikipedia, fan-fiction ..)

● But most good data is restricted: copyrighted, licensed, hidden, not digital …

● Huge imbalance on data in non-English languages availability and usage

Even worse for low-resource languages, local idioms and dialects

● Cleaning / filtering data already improves LLM (cf. Falcon)

● Imbalance on topics (freely) available: computer science versus social sciences, biology, …

● Problem of opinionated texts, propaganda, religions, ideologies

● Problem of time: facts often relate to a time span (who is the US president), new facts need to get 

constantly added: "life-long learning". 

Data may become obsolete, out-dated, wrong over time. 
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Corpus Annotation

● Almost all the tasks we discussed need training material

● For supervised learning, human annotation is needed:
○ What is the POS tag of a word
○ What is a Named Entity in a sentence and which KB entry does it refer to?
○ Does Sentence A entail sentence B?
○ Is that text misogynist?  Does this tweet contain hate speech, directed at whom?
○ Is this a good and factually correct answer to a chat question?
○ ….

● For unsupervised pre-training we need large amount of quality documents 

across many different languages, domains and writing styles
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Quality Evaluation of Human Annotations (1)

● Quality annotations are created by at least 2 independent (expert) 

annotators who are trained on the task-specific annotation guidelines. 

● Cases of disagreement are resolved by mutual agreement, a third 

annotator, or majority voting if there are more than 2 annotators.

● This requires a single truth which, however, does not exist in many 

real-world cases, e.g., what is considered misogynist, in which 

context, by whom, to which extent.
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Measuring Inter-annotator Agreement/Reliability (1)

Inter-annotator agreement (IAA) assesses

● The agreement among individual annotators on an annotation task
● Quality of annotation guidelines has an effect
● IAA reflects how likely the annotators are to achieve the same annotation results 

using the same guidelines.
● There is a number of measures ranging from simple (e.g., percent-agreement) to 

rather complex measures (e.g., Krippendorff’ Alpha)
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Measuring Inter-annotator Agreement/Reliability (2)

● Percent agreement: 
○ #annotations agreed upon/# annotations in total
○ 2 annotators annotating all data of  the same dataset
○ No account for chance agreement → may overestimate true agreement
○ No agreement on the significance of the numeric result

● Krippendorff’s Alpha
○ Complex measure
○ Any number of annotators, no need to annotate all data by each annotator
○ Minimizes the effect of chance
○ Better general interpretability of numeric results, e.g.,  

> 0.9 generally acceptable, > 0.8 fair reliability, > 0.7 tolerable (cf. Nili2020);
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Quality of Human Annotations (2)

● Is the model noisy because of bad data quality? 
○ E.g., low-paid workers annotating huge amounts of data
○ Non-expert annotators

● Do the data reflect a bandwidth of (task-relevant) views, opinions, 
conceptions? 
○ Different groups of annotators may introduce very different biases, e.g. with 

culturally differing concepts as obscenity, offensiveness, sexism; Problem of 
diverse groups of annotators (different opinions, low IAA) vs. more homogenous 
groups

○ Ethically: Expected model output defines data collection and annotation; 
transparency is required, e.g., datasheets for datasets, model cards.
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Model Cards and Datasheets for Datasets

● Model Card

● Datasheet for 

Dataset
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Quality of Annotated Datasets

● For which languages is effort invested?

● For which topics/tasks are datasets created?

● Life after annotation: on the one hand want static corpora for ML 

evaluation and comparison. On the other hand want to correct 

mistakes, improve. Also: obligation to change, e.g. remove deleted 

tweets
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Dealing with annotator disagreement

● Usual view: one true label, annotator disagreement a sign of error (noise)
● Usual strategy: use majority label, adjudicate, get additional annotations
● But for many complex concepts there is no definite single true label
● Get a label distribution p(y|x) which the model should learn: soft-labels 
● Learning with Disagreements (see Uma2021, Leonardelli2023)
● Perform model calibration (Minderer2021) to human uncertainty (Baan2022)
● Also needs different evaluation scores: cross-entropy, correlation, KL-divergence, …
● Similar issues with machine translation: which of many translations for a text are 

acceptable/correct, and what is a good amount of variation between them?
● One major problem: low number of annotator labels may not reflect population distribution
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Opinionated Short List of Related NLP Tools

● Huggingface (P): transformer-related code, model-zoo, data

Pytorch (P): Deep Learning Library

● Spacy(P), Stanza(P), CoreNLP (J): pipeline-based NLP, models for several languages

● Online services: GoogleNLP, Perspective, ELG

● GateNLP (P): integrates most of the above, good abstractions

● Gensim (P), fastText (C+P), AllenNLP (P), FLAIR (P)

● Label-studio, Teamware, Amazon Mechanical Turk: human annotation 

● Scipy, Scikit-Learn: lower level Python packages

P=Python, J=Java, C=C/C++
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Outlook

● Main progress: highly contextualized representations through massive pretraining, 
leading to large improvements in performance on traditional tasks and impressive 
new systems like conversational AI

● But also makes understanding and researching these more important:
○ Knowing not to know
○ Explanation of results on both the domain and model level
○ How to evaluate models trained on a huge area of topics, facts, knowledge?
○ How to make models and research more democratic: who can afford to train a 1T parameters 

model? 
○ How to deal with opinions, ideologies, disagreement, emotions represented in those models?
○ Representation grounding: link concepts to images, videos, sensory data, robot-actions

● NLP/ML research has become more interesting than ever!
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THE END

Thank you!
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