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Clustering – find a meaningful grouping
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Alternative Clustering

Goal:
Find all meaningful 
alternative clusterings.
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Alternative Clustering
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Basis: K-Means

1) random

initialization of the

K cluster centers

2) assignment of

the objects to the

closest center

3) update of

the centers

4) iteration of

2) and 3) until

convergence

+ fast convergence,

+ well-defined objective function,

+ model.
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Multiple K-means Clusterings in 

Optimal Subspaces
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Multiple K-means Clusterings in 

Optimal Subspaces
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• Now we consider S subspaces, each with kj clusters

Multiple K-means Clusterings in 

Optimal Subspaces
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• Now we consider S subspaces, each with kj clusters
• VT is a common an orthogonal transformation matrix
• Pj is a masking matrix that does the projection to Subspace j

Multiple K-means Clusterings in 

Optimal Subspaces
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Intuition: Rotation and Projection to 

Subspace

Assume the original data space is 10-dimensional and the subspace j is 2-dimensional.

12Deep Alternative Clustering



Algorithm NR-K-Means: Initialization

Input parameters: 

number of subspaces S, number of clusters k1, …, kS in each subspace

• Intitialize V to a random orthogonal matrix

• Initialize the projection matrices Pj of size d x d/S

• Initialize the cluster centers mj,i with a random data point

The algorithm will find automatically the optimal dimensionality for each subspace.
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NR-K-Means: Assignment 

For all subspaces: Project all points and all centers; assign each point to the closest 
center (Euclidean distance).

mj,1 mj,2

mj,1

mj,2
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NR-K-Means: Update of the Cluster 

Centers

mj,1

mj,2

As in classical K-Means:
The cluster center is the mean of the associated points.

15Deep Alternative Clustering



NR-K-Means: Update of the Cluster 

Centers

mj,1

mj,2

As in classical K-Means:
The cluster center is the mean of the associated points.
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Update of the Rotation and Projection

In the case of 2 alternative clusterings in 2 subspaces, the optimal update is as follows:

- Consider the matrix S : S1 – S2

- Perform an Eigenvalue decompositon of S
- Sort the Eigenvectors ascendingly according to the Eigenvalues
- Update V: The column vectors of V are the Eigenvectors according to this sorting
- Update P1 such that it masks the Eigenvectors corresponding to negative Eigenvalues
- Update P2 such that it masks the remaining (positive) Eigenvectors

Sum of kj scatter matrices of the clustering in Subspace j
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Intuition: Minimize the scatter in each 

subspace, maximize the difference between scatters

Subspace 1 Subspace 2

V

P2P1
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Proof - Sketch

Uses the Trace-Trick: 
We can re-write our cost function as a trace minimization problem to obtain an Eigenvalue 
problem

• A scalar is a 1x1 matrix
• Equal to its trace
• Characteristics of P1 and P2:
unique assignment of dimensions
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Proof - Sketch

Uses the Trace-Trick: 
We can re-write our cost function as a trace minimization problem to obtain an Eigenvalue 
problem

• A scalar is a 1x1 matrix
• Equal to its trace
• Characteristics of P1 and P2:
unique assignment of dimensions

Automatic selection of dimensionality:
We minimize our objective function by assigning Eigenvectors with negative 
Eigenvalues to S1 and the others to S2
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More than 2 Clusterings – Pairwise 

updates 

Consider all pairs of subspaces:
i) -> ii) Project pair to the joint space,
ii) -> iii) optimize rotation in the projected space
iii -> iv) determine best dimensionality
iv -> v) propagate these changes to the full dimensional space 
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More than 2 Clusterings – Pairwise 

updates 

Consider all pairs of subspaces:
i) -> ii) Project pair to the joint space,
ii) -> iii) optimize rotation in the projected space
iii -> iv) determine best dimensionality
iv -> v) propagate these changes to the full dimensional space 

Runtime Complexity:  
as classical K-Means linear in the number of iterations, the number of clusters and data objects;
Additional cubic complexity in the dimensionality for Eigenvalue decomposition 
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NR-K-Means: Experiments

UCI Stickfigures dataset, 900 objects, 400 
dimensions
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Moving to higher Dimensions by Deep 

Learning

• Successful for image, text, video, audio …

– Structured data

– High data volume

• Automated feature extraction (Representation Learning)

– Useful for supervised and unsupervised learning

– Feature engineering requires domain knowledge

• Easy to parallelize

– GPU friendly

– Works on large amount of data
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Autoencoders

• Learning is done via self-supervision – requires no labels 

• The prediction (output) is a reconstruction of the input data

• Goal: Low dimensional representation (embedding) of input data

Sketch of an autoencoder architecture: 

𝑿𝑵×𝑫 𝑿𝑵×𝑫𝒁𝑵×𝒅
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Autoencoders – Toy Example

• Learning is done via self-supervision – requires no labels 

• The prediction (output) is a reconstruction of the input data

• Goal: Low dimensional representation (embedding) of input data

𝑿𝟖×𝟕𝟖𝟒 𝑿𝟖×𝟕𝟖𝟒

𝒁𝟖×𝟐

Digits from: https://de.wikipedia.org/wiki/MNIST-Datenbank#/media/Datei:MnistExamples.png
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Loss Function

• Compares the reconstruction ො𝑥 with the input 𝑥

• Quantifies the reconstruction loss which we want to minimize

• Common choices for loss functions:

– For binary inputs: Cross Entropy

– For real valued inputs: Sum of Squared Differences

Where Θ are all learnable parameters of the autoencoder
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Architecture of ENRC (Deep Embedded 

Non-redundant Clustering)
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Algorithm ENRC – Initialization Phase

Init embeddings and cluster centers: 

• pre-train autoencoder, 

• init V as random orthogonal matrix

• Initial strong assignments of dimensions to clusterings (b = 0.9), 

• K-Means in subspaces to get initial m

Keep the autoencoder parameters fixed and optimize V, b, m
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Algorithm ENRC – Clustering Phase

Optimize all parameters by mini-batch training:

• The cluster assignments and embeddings of all objects,

• The cluster centers m

• The dimension weights b 

• The rotation matrix V
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ENRC - Experiments

NR-Objects data

16,384 dimensions
10,000 objects

https://github.com/facebookresearch/clevr-dataset-gen

33Deep Alternative Clustering

https://github.com/facebookresearch/clevr-dataset-gen


ENRC - Experiments
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ENRC - Experiments
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ENRC - Experiments
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ENRC - Experiments

German Traffic  Sign Benchmark Data

type color
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Comparison

High-dimensional 
data

Interpretability Runtime Parameterization

K-Means --- (up to about 
10)

+++ (centroids) +++ (milliseconds 
unithreaded 
CPU)

- (# clusters)

NR-K-Means + (hundreds) ++ (centroids 
plus eigenspaces, 
orthonormal 
rotations and 
projections)

++ (seconds 
unithreaded 
CPU)

-- (# clusters, # 
clusterings)

ENRC – the first 
deep alternative 
clustering 
method

+++ (several 
thousands)

+ (centroids, 
arbitrary space 
transformation)

--- (minutes to 
hours on GPU)

--- (# clusters, # 
clusterings, 
dimensionality of 
clustered spaces, 
hyperparameters 
of autoencoder)
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Alternative Clustering for Classification 

of Early Medieval Glass Beads

• Among the most common grave goods 
in the early Middle Ages

• production sites in the Middle East and 
Southeast Asia

• from there, most of the beads reached 
even the most remote areas of Europe

• The color, size, shape, production 
technique and decoration of the beads 
are diverse. 

• Classification systems are often 
subjective, complex and mostly limited 
to one burial field.

Ongoing Project: The Glass Bead Network
Classification of early medieval beads from Vienna-Csokorgasse using AI
Together with Bendeguz Tobias from ÖAW
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Recall: ENRC in a nutshell
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Challenges when moving to the real 

world

Shape Clustering
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• Imbalances
• Corrupted instances due to aging and restoration
• Top and side view for each image
• Small sample size: 4669 beads 
• Outliers
• Difficult parameterization
• Partially overlapping clusterings: often barrel-shaped and yellow
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Analysis Pipeline
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Autoencoder Pretraining

Mixed convolutional autoencoder based on ResNet.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun: Deep Residual Learning for Image Recognition. CVPR 2016: 770-778
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Information-theoretic Parameter 

Estimation

Auto-NR: Greedy algorithm relying on the
Minimum Description Length Principle
 to find suitable parameters for NR-K-
means.

In each step:
Choose the operation that best improves 
the coding costs of the data given the 
cluster model.

Also supports identification of outliers.

Selection of subspace dimensionality: 
Experimentally. 
Similar results for 64 and 128D, 32D seems 
not enough.

Collin Leiber, Dominik Mautz, Claudia Plant, Christian Böhm:Automatic Parameter Selection for Non-Redundant Clustering. SDM 2022: 226-234
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Information-theoretic Parameter 

Estimation

Selection of the number of clusters by data compression.
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ENRC with Application-specific 

Augmentations

Encoded top view with augmentations to achieve invariance against horizontal and 
vertical flipping,
Slight rotations and transformations; cropping to account for missing parts; color 
augmentations to cope with
imbalances

Augmented imagesOriginal images
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Results
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Results: A Fingerprint of Vienna-

Csokorgasse
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Summary

• To the best of our knowledge the first application of alternative 
clustering to ancient glass beads

• The results summarize the findings of a burial site and support 
objective comparison of the findings of different sites – like a 
fingerprint of a burial site

• Lots of interesting but incomplete further information that we 
currently do not use, e.g. beads belonging to one necklace, beads 
found in one grave, beads found at a certain depth
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Comparison

High-dimensional 
data

Interpretability Runtime Parameterization

K-means --- (up to about 
10)

+++ (centroids) +++ (milliseconds 
unithreaded 
CPU)

- (# clusters)

NR-K-means + (hundreds) ++ (centroids 
plus eigenspaces, 
orthonormal 
rotations and 
projections)

++ (seconds 
unithreaded 
CPU)

-- (# clusters, # 
clusterings)

ENRC +++ (serveral 
thousands)

+ (centroids, 
arbitrary space 
transformation)

--- (minutes to 
hours on GPU)

--- (# clusters, # 
clusterings, 
dimensionality of 
clustered spaces, 
hyperparameters 
of autoencoder)
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Looking at this from a more general 

perspective…

High-dimensional 
data

Interpretability Runtime Parameterization

Traditional 
clustering 
algorithms, e.g. 
K-means (1950 
and older)

--- +++ +++ -

Subspace and 
spectral 
methods, e.g., 
NR-K-means
(starting in the 
1990ies)

+ ++ ++ --

Deep clustering 
methods, e.g., 
ENRC (popular 
since 2010)

+++ + --- ---
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…hybrid methods might be the future.

High-dimensional 
data

Interpretability Runtime Parameterization

Traditional 
clustering 
algorithms

--- +++ +++ -

Subspace and 
spectral methods 

+ ++ ++ --

Deep clustering 
methods

+++ + --- ---

Hybrid methods +++ 
expressiveness 
where needed?

++ interpretable 
where possible?

+ spend effort 
where needed?

-- partly 
automatic?
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We need a cost model/objective function 

for hybrid methods

that supports answering the questions:
• How much model complexity/expressiveness do we need to 

cluster our data?
• How to trade-off the gain in expressiveness by deep clustering 

methods with the excessive runtime and energy demand?
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We need a cost model/objective function 

for hybrid methods

that supports answering the questions:
• How much model complexity/expressiveness do we need to 

cluster our data?
• How to trade-off the gain in expressiveness by deep clustering 

methods with the excessive runtime and energy demand?

56
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We need a cost model/objective function 

for hybrid methods

For traditional and subspace clustering methods, data compression 
works, but how to deal with huge parameter spaces? (ResNet50: 
about 100 millions of trainable parameters to model about 5000 
glass beads)

And how to tackle energy efficiency?
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Some solved and a lot more open 

problems – so the journey will go on ☺

Prof. Wei Ye
PhD 2018 (LMU) 
Now TT-Prof. at
Tongji University,
Shanghai

Dr. Dominik Mautz
PhD 2022 (LMU) 

Lukas Miklautz
PhD thesis submitted (UniVie) 

Dr. Bendeguz Tobias
Glass Beads Project (ÖAW) 

Collin Leiber, LMU Lena Bauer, UniVie
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Team Data Mining

• Clustering

• Data mining methods for complex and heterogeneous data, e.g., 
time series, heterogeneous information networks

• Application-related methods: archeology, biomedicine, social 
sciences, meteorology, transport, particle physics 
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Step-by-step Transformation (for those 

interested ☺)
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Step-by-step Transformation cont. (for 

those interested ☺)
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Step-by-step Transformation cont. (for 

those interested ☺)
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